/***************************************************************************** * bezier.cpp ***************************************************************************** * Copyright (C) 2003 the VideoLAN team * $Id$ * * Authors: Cyril Deguet * Olivier Teulière * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA. *****************************************************************************/ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include #include "bezier.hpp" #include // XXX should be in VLC core #ifndef HAVE_LRINTF # ifdef HAVE_LRINT # define lrintf( x ) (int)rint( x ) # elif defined _WIN32 __inline long int lrintf( float x ) { int i; _asm fld x __asm fistp i return i; } # endif #endif Bezier::Bezier( intf_thread_t *p_intf, const std::vector &rAbscissas, const std::vector &rOrdinates, Flag_t flag ) : SkinObject( p_intf ) { // Copy the control points coordinates m_ptx.assign( rAbscissas.begin(), rAbscissas.end() ); m_pty.assign( rOrdinates.begin(), rOrdinates.end() ); // We expect m_ptx and m_pty to have the same size, of course m_nbCtrlPt = m_ptx.size(); // Precalculate the factoriels m_ft.push_back( 1 ); for( int i = 1; i < m_nbCtrlPt; i++ ) { m_ft.push_back( i * m_ft[i - 1] ); } // Calculate the first point int oldx, oldy; computePoint( 0, oldx, oldy ); m_leftVect.push_back( oldx ); m_topVect.push_back( oldy ); m_percVect.push_back( 0 ); // Calculate the other points float percentage; int cx, cy; for( float j = 1; j <= MAX_BEZIER_POINT; j++ ) { percentage = j / MAX_BEZIER_POINT; computePoint( percentage, cx, cy ); if( ( flag == kCoordsBoth && ( cx != oldx || cy != oldy ) ) || ( flag == kCoordsX && cx != oldx ) || ( flag == kCoordsY && cy != oldy ) ) { m_percVect.push_back( percentage ); m_leftVect.push_back( cx ); m_topVect.push_back( cy ); oldx = cx; oldy = cy; } } m_nbPoints = m_leftVect.size(); // If we have only one control point, we duplicate it // This allows simplifying the algorithms used in the class if( m_nbPoints == 1 ) { m_leftVect.push_back( m_leftVect[0] ); m_topVect.push_back( m_topVect[0] ); m_percVect.push_back( 1 ); m_nbPoints = 2; } // Ensure that the percentage of the last point is always 1 m_percVect[m_nbPoints - 1] = 1; } float Bezier::getNearestPercent( int x, int y ) const { int nearest = findNearestPoint( x, y ); return m_percVect[nearest]; } float Bezier::getMinDist( int x, int y, float xScale, float yScale ) const { int nearest = findNearestPoint( x, y ); double xDist = xScale * (m_leftVect[nearest] - x); double yDist = yScale * (m_topVect[nearest] - y); return sqrt( xDist * xDist + yDist * yDist ); } void Bezier::getPoint( float t, int &x, int &y ) const { // Find the precalculated point whose percentage is nearest from t int refPoint = 0; float minDiff = fabs( m_percVect[0] - t ); // The percentages are stored in increasing order, so we can stop the loop // as soon as 'diff' starts increasing float diff; while( refPoint < m_nbPoints && (diff = fabs( m_percVect[refPoint] - t )) <= minDiff ) { refPoint++; minDiff = diff; } // The searched point is then (refPoint - 1) // We know that refPoint > 0 because we looped at least once x = m_leftVect[refPoint - 1]; y = m_topVect[refPoint - 1]; } int Bezier::getWidth() const { int width = 0; for( int i = 0; i < m_nbPoints; i++ ) { if( m_leftVect[i] >= width ) { width = m_leftVect[i] + 1; } } return width; } int Bezier::getHeight() const { int height = 0; for( int i = 0; i < m_nbPoints; i++ ) { if( m_topVect[i] >= height ) { height = m_topVect[i] + 1; } } return height; } int Bezier::findNearestPoint( int x, int y ) const { // The distance to the first point is taken as the reference int refPoint = 0; int minDist = (m_leftVect[0] - x) * (m_leftVect[0] - x) + (m_topVect[0] - y) * (m_topVect[0] - y); int dist; for( int i = 1; i < m_nbPoints; i++ ) { dist = (m_leftVect[i] - x) * (m_leftVect[i] - x) + (m_topVect[i] - y) * (m_topVect[i] - y); if( dist < minDist ) { minDist = dist; refPoint = i; } } return refPoint; } inline float Bezier::power( float x, int n ) { #if 0 return n <= 0 ? 1 : x * power( x, n - 1 ); #else return powf( x, n ); #endif } inline float Bezier::computeCoeff( int i, int n, float t ) const { return (power( t, i ) * power( 1 - t, (n - i) ) * (m_ft[n] / m_ft[i] / m_ft[n - i])); } void Bezier::computePoint( float t, int &x, int &y ) const { // See http://astronomy.swin.edu.au/~pbourke/curves/bezier/ for a simple // explanation of the algorithm float xPos = 0; float yPos = 0; float coeff; for( int i = 0; i < m_nbCtrlPt; i++ ) { coeff = computeCoeff( i, m_nbCtrlPt - 1, t ); xPos += m_ptx[i] * coeff; yPos += m_pty[i] * coeff; } x = lrintf(xPos); y = lrintf(yPos); }