/***************************************************************************** * Copyright (C) 2024 MulticoreWare, Inc * * Authors: Hari Limaye * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at license @ x265.com. *****************************************************************************/ #include "sao-prim.h" static inline uint8x16_t sve_count(int8x16_t in) { // We do not care about initialising the values in the rest of the vector, // for VL > 128, as HISTSEG counts matching elements in 128-bit segments. svint8_t edge_type = svset_neonq_s8(svundef_s8(), in); // Use an arbitrary value outside of range [-2, 2] for lanes we don't // need to use the result from. const int DC = -3; // s_eoTable maps edge types to memory in order: {2, 0, 1, 3, 4}. // We use (edge_class - 2) resulting in {0, -2, -1, 1, 2} int8x16_t idx = { 0, -2, -1, 1, 2, DC, DC, DC, DC, DC, DC, DC, DC, DC, DC, DC }; svint8_t svidx = svset_neonq_s8(svundef_s8(), idx); svuint8_t count = svhistseg_s8(svidx, edge_type); return svget_neonq_u8(count); } /* * Compute Edge Offset statistics (stats array). * To save some instructions compute stats as negative values - since output of * Neon comparison instructions for a matched condition is all 1s (-1). */ static inline void compute_eo_stats(const int8x16_t edge_type, const int16_t *diff, int64x2_t *stats) { // Create a mask for each edge type. int8x16_t mask0 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(-2))); int8x16_t mask1 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(-1))); int8x16_t mask2 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(0))); int8x16_t mask3 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(1))); int8x16_t mask4 = vreinterpretq_s8_u8(vceqq_s8(edge_type, vdupq_n_s8(2))); // Widen the masks to 16-bit. int16x8_t mask0_lo = vreinterpretq_s16_s8(vzip1q_s8(mask0, mask0)); int16x8_t mask0_hi = vreinterpretq_s16_s8(vzip2q_s8(mask0, mask0)); int16x8_t mask1_lo = vreinterpretq_s16_s8(vzip1q_s8(mask1, mask1)); int16x8_t mask1_hi = vreinterpretq_s16_s8(vzip2q_s8(mask1, mask1)); int16x8_t mask2_lo = vreinterpretq_s16_s8(vzip1q_s8(mask2, mask2)); int16x8_t mask2_hi = vreinterpretq_s16_s8(vzip2q_s8(mask2, mask2)); int16x8_t mask3_lo = vreinterpretq_s16_s8(vzip1q_s8(mask3, mask3)); int16x8_t mask3_hi = vreinterpretq_s16_s8(vzip2q_s8(mask3, mask3)); int16x8_t mask4_lo = vreinterpretq_s16_s8(vzip1q_s8(mask4, mask4)); int16x8_t mask4_hi = vreinterpretq_s16_s8(vzip2q_s8(mask4, mask4)); int16x8_t diff_lo = vld1q_s16(diff); int16x8_t diff_hi = vld1q_s16(diff + 8); // Compute negative stats for each edge type. stats[0] = x265_sdotq_s16(stats[0], diff_lo, mask0_lo); stats[0] = x265_sdotq_s16(stats[0], diff_hi, mask0_hi); stats[1] = x265_sdotq_s16(stats[1], diff_lo, mask1_lo); stats[1] = x265_sdotq_s16(stats[1], diff_hi, mask1_hi); stats[2] = x265_sdotq_s16(stats[2], diff_lo, mask2_lo); stats[2] = x265_sdotq_s16(stats[2], diff_hi, mask2_hi); stats[3] = x265_sdotq_s16(stats[3], diff_lo, mask3_lo); stats[3] = x265_sdotq_s16(stats[3], diff_hi, mask3_hi); stats[4] = x265_sdotq_s16(stats[4], diff_lo, mask4_lo); stats[4] = x265_sdotq_s16(stats[4], diff_hi, mask4_hi); } /* * Reduce and store Edge Offset statistics (count and stats). */ static inline void reduce_eo_stats(int64x2_t *vstats, uint16x8_t vcount, int32_t *stats, int32_t *count) { // s_eoTable maps edge types to memory in order: {2, 0, 1, 3, 4}. // We already have the count values in the correct order for the store, // so widen to 32-bit and accumulate to the destination. int32x4_t c0123 = vmovl_s16(vget_low_s16(vreinterpretq_s16_u16(vcount))); vst1q_s32(count, vaddq_s32(vld1q_s32(count), c0123)); count[4] += vcount[4]; int32x4_t s01 = vcombine_s32(vmovn_s64(vstats[2]), vmovn_s64(vstats[0])); int32x4_t s23 = vcombine_s32(vmovn_s64(vstats[1]), vmovn_s64(vstats[3])); int32x4_t s0123 = vpaddq_s32(s01, s23); // Subtract from current stats, as we calculate the negation. vst1q_s32(stats, vsubq_s32(vld1q_s32(stats), s0123)); stats[4] -= vaddvq_s64(vstats[4]); } namespace X265_NS { void saoCuStatsE0_sve2(const int16_t *diff, const pixel *rec, intptr_t stride, int endX, int endY, int32_t *stats, int32_t *count) { // Separate buffers for each edge type, so that we can vectorise. int64x2_t tmp_stats[5] = { vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0) }; uint16x8_t count_acc_u16 = vdupq_n_u16(0); for (int y = 0; y < endY; y++) { uint8x16_t count_acc_u8 = vdupq_n_u8(0); // Calculate negated sign_left(x) directly, to save negation when // reusing sign_right(x) as sign_left(x + 1). int8x16_t neg_sign_left = vdupq_n_s8(x265_signOf(rec[-1] - rec[0])); for (int x = 0; x < endX; x += 16) { int8x16_t sign_right = signOf_neon(rec + x, rec + x + 1); // neg_sign_left(x) = sign_right(x + 1), reusing one from previous // iteration. neg_sign_left = vextq_s8(neg_sign_left, sign_right, 15); // Subtract instead of add, as sign_left is negated. int8x16_t edge_type = vsubq_s8(sign_right, neg_sign_left); // For reuse in the next iteration. neg_sign_left = sign_right; edge_type = x265_sve_mask(x, endX, edge_type); count_acc_u8 = vaddq_u8(count_acc_u8, sve_count(edge_type)); compute_eo_stats(edge_type, diff + x, tmp_stats); } // The width (endX) can be a maximum of 64, so we can safely // widen from 8-bit count accumulators after one inner loop iteration. // Technically the largest an accumulator could reach after one inner // loop iteration is 64, if every input value had the same edge type, so // we could complete two iterations (2 * 64 = 128) before widening. count_acc_u16 = vaddw_u8(count_acc_u16, vget_low_u8(count_acc_u8)); diff += MAX_CU_SIZE; rec += stride; } reduce_eo_stats(tmp_stats, count_acc_u16, stats, count); } void saoCuStatsE1_sve2(const int16_t *diff, const pixel *rec, intptr_t stride, int8_t *upBuff1, int endX, int endY, int32_t *stats, int32_t *count) { // Separate buffers for each edge type, so that we can vectorise. int64x2_t tmp_stats[5] = { vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0) }; uint16x8_t count_acc_u16 = vdupq_n_u16(0); // Negate upBuff1 (sign_up), so we can subtract and save repeated negations. for (int x = 0; x < endX; x += 16) { vst1q_s8(upBuff1 + x, vnegq_s8(vld1q_s8(upBuff1 + x))); } for (int y = 0; y < endY; y++) { uint8x16_t count_acc_u8 = vdupq_n_u8(0); for (int x = 0; x < endX; x += 16) { int8x16_t sign_up = vld1q_s8(upBuff1 + x); int8x16_t sign_down = signOf_neon(rec + x, rec + x + stride); // Subtract instead of add, as sign_up is negated. int8x16_t edge_type = vsubq_s8(sign_down, sign_up); // For reuse in the next iteration. vst1q_s8(upBuff1 + x, sign_down); edge_type = x265_sve_mask(x, endX, edge_type); count_acc_u8 = vaddq_u8(count_acc_u8, sve_count(edge_type)); compute_eo_stats(edge_type, diff + x, tmp_stats); } // The width (endX) can be a maximum of 64, so we can safely // widen from 8-bit count accumulators after one inner loop iteration. // Technically the largest an accumulator could reach after one inner // loop iteration is 64, if every input value had the same edge type, so // we could complete two iterations (2 * 64 = 128) before widening. count_acc_u16 = vaddw_u8(count_acc_u16, vget_low_u8(count_acc_u8)); diff += MAX_CU_SIZE; rec += stride; } reduce_eo_stats(tmp_stats, count_acc_u16, stats, count); } void saoCuStatsE2_sve2(const int16_t *diff, const pixel *rec, intptr_t stride, int8_t *upBuff1, int8_t *upBufft, int endX, int endY, int32_t *stats, int32_t *count) { // Separate buffers for each edge type, so that we can vectorise. int64x2_t tmp_stats[5] = { vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0) }; uint16x8_t count_acc_u16 = vdupq_n_u16(0); // Negate upBuff1 (sign_up) so we can subtract and save repeated negations. for (int x = 0; x < endX; x += 16) { vst1q_s8(upBuff1 + x, vnegq_s8(vld1q_s8(upBuff1 + x))); } for (int y = 0; y < endY; y++) { uint8x16_t count_acc_u8 = vdupq_n_u8(0); upBufft[0] = x265_signOf(rec[-1] - rec[stride]); for (int x = 0; x < endX; x += 16) { int8x16_t sign_up = vld1q_s8(upBuff1 + x); int8x16_t sign_down = signOf_neon(rec + x, rec + x + stride + 1); // Subtract instead of add, as sign_up is negated. int8x16_t edge_type = vsubq_s8(sign_down, sign_up); // For reuse in the next iteration. vst1q_s8(upBufft + x + 1, sign_down); edge_type = x265_sve_mask(x, endX, edge_type); count_acc_u8 = vaddq_u8(count_acc_u8, sve_count(edge_type)); compute_eo_stats(edge_type, diff + x, tmp_stats); } std::swap(upBuff1, upBufft); // The width (endX) can be a maximum of 64, so we can safely // widen from 8-bit count accumulators after one inner loop iteration. // Technically the largest an accumulator could reach after one inner // loop iteration is 64, if every input value had the same edge type, so // we could complete two iterations (2 * 64 = 128) before widening. count_acc_u16 = vaddw_u8(count_acc_u16, vget_low_u8(count_acc_u8)); rec += stride; diff += MAX_CU_SIZE; } reduce_eo_stats(tmp_stats, count_acc_u16, stats, count); } void saoCuStatsE3_sve2(const int16_t *diff, const pixel *rec, intptr_t stride, int8_t *upBuff1, int endX, int endY, int32_t *stats, int32_t *count) { // Separate buffers for each edge type, so that we can vectorise. int64x2_t tmp_stats[5] = { vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0), vdupq_n_s64(0) }; uint16x8_t count_acc_u16 = vdupq_n_u16(0); // Negate upBuff1 (sign_up) so we can subtract and save repeated negations. for (int x = 0; x < endX; x += 16) { vst1q_s8(upBuff1 + x, vnegq_s8(vld1q_s8(upBuff1 + x))); } for (int y = 0; y < endY; y++) { uint8x16_t count_acc_u8 = vdupq_n_u8(0); for (int x = 0; x < endX; x += 16) { int8x16_t sign_up = vld1q_s8(upBuff1 + x); int8x16_t sign_down = signOf_neon(rec + x, rec + x + stride - 1); // Subtract instead of add, as sign_up is negated. int8x16_t edge_type = vsubq_s8(sign_down, sign_up); // For reuse in the next iteration. vst1q_s8(upBuff1 + x - 1, sign_down); edge_type = x265_sve_mask(x, endX, edge_type); count_acc_u8 = vaddq_u8(count_acc_u8, sve_count(edge_type)); compute_eo_stats(edge_type, diff + x, tmp_stats); } upBuff1[endX - 1] = x265_signOf(rec[endX] - rec[endX - 1 + stride]); // The width (endX) can be a maximum of 64, so we can safely // widen from 8-bit count accumulators after one inner loop iteration. // Technically the largest an accumulator could reach after one inner // loop iteration is 64, if every input value had the same edge type, so // we could complete two iterations (2 * 64 = 128) before widening. count_acc_u16 = vaddw_u8(count_acc_u16, vget_low_u8(count_acc_u8)); rec += stride; diff += MAX_CU_SIZE; } reduce_eo_stats(tmp_stats, count_acc_u16, stats, count); } void setupSaoPrimitives_sve2(EncoderPrimitives &p) { p.saoCuStatsE0 = saoCuStatsE0_sve2; p.saoCuStatsE1 = saoCuStatsE1_sve2; p.saoCuStatsE2 = saoCuStatsE2_sve2; p.saoCuStatsE3 = saoCuStatsE3_sve2; } } // namespace X265_NS