/***************************************************************************** * Copyright (C) 2013-2020 MulticoreWare, Inc * * Authors: Mandar Gurav * Deepthi Devaki Akkoorath * Mahesh Pittala * Rajesh Paulraj * Min Chen * Praveen Kumar Tiwari * Nabajit Deka * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at license @ x265.com. *****************************************************************************/ #include "common.h" #include "primitives.h" #include "contexts.h" // costCoeffNxN_c #include "threading.h" // CLZ using namespace X265_NS; #if _MSC_VER #pragma warning(disable: 4127) // conditional expression is constant, typical for templated functions #endif // Fast DST Algorithm. Full matrix multiplication for DST and Fast DST algorithm // give identical results static void fastForwardDst(const int16_t* block, int16_t* coeff, int shift) // input block, output coeff { int c[4]; int rnd_factor = 1 << (shift - 1); for (int i = 0; i < 4; i++) { // Intermediate Variables c[0] = block[4 * i + 0] + block[4 * i + 3]; c[1] = block[4 * i + 1] + block[4 * i + 3]; c[2] = block[4 * i + 0] - block[4 * i + 1]; c[3] = 74 * block[4 * i + 2]; coeff[i] = (int16_t)((29 * c[0] + 55 * c[1] + c[3] + rnd_factor) >> shift); coeff[4 + i] = (int16_t)((74 * (block[4 * i + 0] + block[4 * i + 1] - block[4 * i + 3]) + rnd_factor) >> shift); coeff[8 + i] = (int16_t)((29 * c[2] + 55 * c[0] - c[3] + rnd_factor) >> shift); coeff[12 + i] = (int16_t)((55 * c[2] - 29 * c[1] + c[3] + rnd_factor) >> shift); } } static void inversedst(const int16_t* tmp, int16_t* block, int shift) // input tmp, output block { int i, c[4]; int rnd_factor = 1 << (shift - 1); for (i = 0; i < 4; i++) { // Intermediate Variables c[0] = tmp[i] + tmp[8 + i]; c[1] = tmp[8 + i] + tmp[12 + i]; c[2] = tmp[i] - tmp[12 + i]; c[3] = 74 * tmp[4 + i]; block[4 * i + 0] = (int16_t)x265_clip3(-32768, 32767, (29 * c[0] + 55 * c[1] + c[3] + rnd_factor) >> shift); block[4 * i + 1] = (int16_t)x265_clip3(-32768, 32767, (55 * c[2] - 29 * c[1] + c[3] + rnd_factor) >> shift); block[4 * i + 2] = (int16_t)x265_clip3(-32768, 32767, (74 * (tmp[i] - tmp[8 + i] + tmp[12 + i]) + rnd_factor) >> shift); block[4 * i + 3] = (int16_t)x265_clip3(-32768, 32767, (55 * c[0] + 29 * c[2] - c[3] + rnd_factor) >> shift); } } static void partialButterfly16(const int16_t* src, int16_t* dst, int shift, int line) { int j, k; int E[8], O[8]; int EE[4], EO[4]; int EEE[2], EEO[2]; int add = 1 << (shift - 1); for (j = 0; j < line; j++) { /* E and O */ for (k = 0; k < 8; k++) { E[k] = src[k] + src[15 - k]; O[k] = src[k] - src[15 - k]; } /* EE and EO */ for (k = 0; k < 4; k++) { EE[k] = E[k] + E[7 - k]; EO[k] = E[k] - E[7 - k]; } /* EEE and EEO */ EEE[0] = EE[0] + EE[3]; EEO[0] = EE[0] - EE[3]; EEE[1] = EE[1] + EE[2]; EEO[1] = EE[1] - EE[2]; dst[0] = (int16_t)((g_t16[0][0] * EEE[0] + g_t16[0][1] * EEE[1] + add) >> shift); dst[8 * line] = (int16_t)((g_t16[8][0] * EEE[0] + g_t16[8][1] * EEE[1] + add) >> shift); dst[4 * line] = (int16_t)((g_t16[4][0] * EEO[0] + g_t16[4][1] * EEO[1] + add) >> shift); dst[12 * line] = (int16_t)((g_t16[12][0] * EEO[0] + g_t16[12][1] * EEO[1] + add) >> shift); for (k = 2; k < 16; k += 4) { dst[k * line] = (int16_t)((g_t16[k][0] * EO[0] + g_t16[k][1] * EO[1] + g_t16[k][2] * EO[2] + g_t16[k][3] * EO[3] + add) >> shift); } for (k = 1; k < 16; k += 2) { dst[k * line] = (int16_t)((g_t16[k][0] * O[0] + g_t16[k][1] * O[1] + g_t16[k][2] * O[2] + g_t16[k][3] * O[3] + g_t16[k][4] * O[4] + g_t16[k][5] * O[5] + g_t16[k][6] * O[6] + g_t16[k][7] * O[7] + add) >> shift); } src += 16; dst++; } } static void partialButterfly32(const int16_t* src, int16_t* dst, int shift, int line) { int j, k; int E[16], O[16]; int EE[8], EO[8]; int EEE[4], EEO[4]; int EEEE[2], EEEO[2]; int add = 1 << (shift - 1); for (j = 0; j < line; j++) { /* E and O*/ for (k = 0; k < 16; k++) { E[k] = src[k] + src[31 - k]; O[k] = src[k] - src[31 - k]; } /* EE and EO */ for (k = 0; k < 8; k++) { EE[k] = E[k] + E[15 - k]; EO[k] = E[k] - E[15 - k]; } /* EEE and EEO */ for (k = 0; k < 4; k++) { EEE[k] = EE[k] + EE[7 - k]; EEO[k] = EE[k] - EE[7 - k]; } /* EEEE and EEEO */ EEEE[0] = EEE[0] + EEE[3]; EEEO[0] = EEE[0] - EEE[3]; EEEE[1] = EEE[1] + EEE[2]; EEEO[1] = EEE[1] - EEE[2]; dst[0] = (int16_t)((g_t32[0][0] * EEEE[0] + g_t32[0][1] * EEEE[1] + add) >> shift); dst[16 * line] = (int16_t)((g_t32[16][0] * EEEE[0] + g_t32[16][1] * EEEE[1] + add) >> shift); dst[8 * line] = (int16_t)((g_t32[8][0] * EEEO[0] + g_t32[8][1] * EEEO[1] + add) >> shift); dst[24 * line] = (int16_t)((g_t32[24][0] * EEEO[0] + g_t32[24][1] * EEEO[1] + add) >> shift); for (k = 4; k < 32; k += 8) { dst[k * line] = (int16_t)((g_t32[k][0] * EEO[0] + g_t32[k][1] * EEO[1] + g_t32[k][2] * EEO[2] + g_t32[k][3] * EEO[3] + add) >> shift); } for (k = 2; k < 32; k += 4) { dst[k * line] = (int16_t)((g_t32[k][0] * EO[0] + g_t32[k][1] * EO[1] + g_t32[k][2] * EO[2] + g_t32[k][3] * EO[3] + g_t32[k][4] * EO[4] + g_t32[k][5] * EO[5] + g_t32[k][6] * EO[6] + g_t32[k][7] * EO[7] + add) >> shift); } for (k = 1; k < 32; k += 2) { dst[k * line] = (int16_t)((g_t32[k][0] * O[0] + g_t32[k][1] * O[1] + g_t32[k][2] * O[2] + g_t32[k][3] * O[3] + g_t32[k][4] * O[4] + g_t32[k][5] * O[5] + g_t32[k][6] * O[6] + g_t32[k][7] * O[7] + g_t32[k][8] * O[8] + g_t32[k][9] * O[9] + g_t32[k][10] * O[10] + g_t32[k][11] * O[11] + g_t32[k][12] * O[12] + g_t32[k][13] * O[13] + g_t32[k][14] * O[14] + g_t32[k][15] * O[15] + add) >> shift); } src += 32; dst++; } } static void partialButterfly8(const int16_t* src, int16_t* dst, int shift, int line) { int j, k; int E[4], O[4]; int EE[2], EO[2]; int add = 1 << (shift - 1); for (j = 0; j < line; j++) { /* E and O*/ for (k = 0; k < 4; k++) { E[k] = src[k] + src[7 - k]; O[k] = src[k] - src[7 - k]; } /* EE and EO */ EE[0] = E[0] + E[3]; EO[0] = E[0] - E[3]; EE[1] = E[1] + E[2]; EO[1] = E[1] - E[2]; dst[0] = (int16_t)((g_t8[0][0] * EE[0] + g_t8[0][1] * EE[1] + add) >> shift); dst[4 * line] = (int16_t)((g_t8[4][0] * EE[0] + g_t8[4][1] * EE[1] + add) >> shift); dst[2 * line] = (int16_t)((g_t8[2][0] * EO[0] + g_t8[2][1] * EO[1] + add) >> shift); dst[6 * line] = (int16_t)((g_t8[6][0] * EO[0] + g_t8[6][1] * EO[1] + add) >> shift); dst[line] = (int16_t)((g_t8[1][0] * O[0] + g_t8[1][1] * O[1] + g_t8[1][2] * O[2] + g_t8[1][3] * O[3] + add) >> shift); dst[3 * line] = (int16_t)((g_t8[3][0] * O[0] + g_t8[3][1] * O[1] + g_t8[3][2] * O[2] + g_t8[3][3] * O[3] + add) >> shift); dst[5 * line] = (int16_t)((g_t8[5][0] * O[0] + g_t8[5][1] * O[1] + g_t8[5][2] * O[2] + g_t8[5][3] * O[3] + add) >> shift); dst[7 * line] = (int16_t)((g_t8[7][0] * O[0] + g_t8[7][1] * O[1] + g_t8[7][2] * O[2] + g_t8[7][3] * O[3] + add) >> shift); src += 8; dst++; } } static void partialButterflyInverse4(const int16_t* src, int16_t* dst, int shift, int line) { int j; int E[2], O[2]; int add = 1 << (shift - 1); for (j = 0; j < line; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ O[0] = g_t4[1][0] * src[line] + g_t4[3][0] * src[3 * line]; O[1] = g_t4[1][1] * src[line] + g_t4[3][1] * src[3 * line]; E[0] = g_t4[0][0] * src[0] + g_t4[2][0] * src[2 * line]; E[1] = g_t4[0][1] * src[0] + g_t4[2][1] * src[2 * line]; /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ dst[0] = (int16_t)(x265_clip3(-32768, 32767, (E[0] + O[0] + add) >> shift)); dst[1] = (int16_t)(x265_clip3(-32768, 32767, (E[1] + O[1] + add) >> shift)); dst[2] = (int16_t)(x265_clip3(-32768, 32767, (E[1] - O[1] + add) >> shift)); dst[3] = (int16_t)(x265_clip3(-32768, 32767, (E[0] - O[0] + add) >> shift)); src++; dst += 4; } } static void partialButterflyInverse8(const int16_t* src, int16_t* dst, int shift, int line) { int j, k; int E[4], O[4]; int EE[2], EO[2]; int add = 1 << (shift - 1); for (j = 0; j < line; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for (k = 0; k < 4; k++) { O[k] = g_t8[1][k] * src[line] + g_t8[3][k] * src[3 * line] + g_t8[5][k] * src[5 * line] + g_t8[7][k] * src[7 * line]; } EO[0] = g_t8[2][0] * src[2 * line] + g_t8[6][0] * src[6 * line]; EO[1] = g_t8[2][1] * src[2 * line] + g_t8[6][1] * src[6 * line]; EE[0] = g_t8[0][0] * src[0] + g_t8[4][0] * src[4 * line]; EE[1] = g_t8[0][1] * src[0] + g_t8[4][1] * src[4 * line]; /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ E[0] = EE[0] + EO[0]; E[3] = EE[0] - EO[0]; E[1] = EE[1] + EO[1]; E[2] = EE[1] - EO[1]; for (k = 0; k < 4; k++) { dst[k] = (int16_t)x265_clip3(-32768, 32767, (E[k] + O[k] + add) >> shift); dst[k + 4] = (int16_t)x265_clip3(-32768, 32767, (E[3 - k] - O[3 - k] + add) >> shift); } src++; dst += 8; } } static void partialButterflyInverse16(const int16_t* src, int16_t* dst, int shift, int line) { int j, k; int E[8], O[8]; int EE[4], EO[4]; int EEE[2], EEO[2]; int add = 1 << (shift - 1); for (j = 0; j < line; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for (k = 0; k < 8; k++) { O[k] = g_t16[1][k] * src[line] + g_t16[3][k] * src[3 * line] + g_t16[5][k] * src[5 * line] + g_t16[7][k] * src[7 * line] + g_t16[9][k] * src[9 * line] + g_t16[11][k] * src[11 * line] + g_t16[13][k] * src[13 * line] + g_t16[15][k] * src[15 * line]; } for (k = 0; k < 4; k++) { EO[k] = g_t16[2][k] * src[2 * line] + g_t16[6][k] * src[6 * line] + g_t16[10][k] * src[10 * line] + g_t16[14][k] * src[14 * line]; } EEO[0] = g_t16[4][0] * src[4 * line] + g_t16[12][0] * src[12 * line]; EEE[0] = g_t16[0][0] * src[0] + g_t16[8][0] * src[8 * line]; EEO[1] = g_t16[4][1] * src[4 * line] + g_t16[12][1] * src[12 * line]; EEE[1] = g_t16[0][1] * src[0] + g_t16[8][1] * src[8 * line]; /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ for (k = 0; k < 2; k++) { EE[k] = EEE[k] + EEO[k]; EE[k + 2] = EEE[1 - k] - EEO[1 - k]; } for (k = 0; k < 4; k++) { E[k] = EE[k] + EO[k]; E[k + 4] = EE[3 - k] - EO[3 - k]; } for (k = 0; k < 8; k++) { dst[k] = (int16_t)x265_clip3(-32768, 32767, (E[k] + O[k] + add) >> shift); dst[k + 8] = (int16_t)x265_clip3(-32768, 32767, (E[7 - k] - O[7 - k] + add) >> shift); } src++; dst += 16; } } static void partialButterflyInverse32(const int16_t* src, int16_t* dst, int shift, int line) { int j, k; int E[16], O[16]; int EE[8], EO[8]; int EEE[4], EEO[4]; int EEEE[2], EEEO[2]; int add = 1 << (shift - 1); for (j = 0; j < line; j++) { /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */ for (k = 0; k < 16; k++) { O[k] = g_t32[1][k] * src[line] + g_t32[3][k] * src[3 * line] + g_t32[5][k] * src[5 * line] + g_t32[7][k] * src[7 * line] + g_t32[9][k] * src[9 * line] + g_t32[11][k] * src[11 * line] + g_t32[13][k] * src[13 * line] + g_t32[15][k] * src[15 * line] + g_t32[17][k] * src[17 * line] + g_t32[19][k] * src[19 * line] + g_t32[21][k] * src[21 * line] + g_t32[23][k] * src[23 * line] + g_t32[25][k] * src[25 * line] + g_t32[27][k] * src[27 * line] + g_t32[29][k] * src[29 * line] + g_t32[31][k] * src[31 * line]; } for (k = 0; k < 8; k++) { EO[k] = g_t32[2][k] * src[2 * line] + g_t32[6][k] * src[6 * line] + g_t32[10][k] * src[10 * line] + g_t32[14][k] * src[14 * line] + g_t32[18][k] * src[18 * line] + g_t32[22][k] * src[22 * line] + g_t32[26][k] * src[26 * line] + g_t32[30][k] * src[30 * line]; } for (k = 0; k < 4; k++) { EEO[k] = g_t32[4][k] * src[4 * line] + g_t32[12][k] * src[12 * line] + g_t32[20][k] * src[20 * line] + g_t32[28][k] * src[28 * line]; } EEEO[0] = g_t32[8][0] * src[8 * line] + g_t32[24][0] * src[24 * line]; EEEO[1] = g_t32[8][1] * src[8 * line] + g_t32[24][1] * src[24 * line]; EEEE[0] = g_t32[0][0] * src[0] + g_t32[16][0] * src[16 * line]; EEEE[1] = g_t32[0][1] * src[0] + g_t32[16][1] * src[16 * line]; /* Combining even and odd terms at each hierarchy levels to calculate the final spatial domain vector */ EEE[0] = EEEE[0] + EEEO[0]; EEE[3] = EEEE[0] - EEEO[0]; EEE[1] = EEEE[1] + EEEO[1]; EEE[2] = EEEE[1] - EEEO[1]; for (k = 0; k < 4; k++) { EE[k] = EEE[k] + EEO[k]; EE[k + 4] = EEE[3 - k] - EEO[3 - k]; } for (k = 0; k < 8; k++) { E[k] = EE[k] + EO[k]; E[k + 8] = EE[7 - k] - EO[7 - k]; } for (k = 0; k < 16; k++) { dst[k] = (int16_t)x265_clip3(-32768, 32767, (E[k] + O[k] + add) >> shift); dst[k + 16] = (int16_t)x265_clip3(-32768, 32767, (E[15 - k] - O[15 - k] + add) >> shift); } src++; dst += 32; } } static void partialButterfly4(const int16_t* src, int16_t* dst, int shift, int line) { int j; int E[2], O[2]; int add = 1 << (shift - 1); for (j = 0; j < line; j++) { /* E and O */ E[0] = src[0] + src[3]; O[0] = src[0] - src[3]; E[1] = src[1] + src[2]; O[1] = src[1] - src[2]; dst[0] = (int16_t)((g_t4[0][0] * E[0] + g_t4[0][1] * E[1] + add) >> shift); dst[2 * line] = (int16_t)((g_t4[2][0] * E[0] + g_t4[2][1] * E[1] + add) >> shift); dst[line] = (int16_t)((g_t4[1][0] * O[0] + g_t4[1][1] * O[1] + add) >> shift); dst[3 * line] = (int16_t)((g_t4[3][0] * O[0] + g_t4[3][1] * O[1] + add) >> shift); src += 4; dst++; } } namespace X265_NS { void dst4_c(const int16_t* src, int16_t* dst, intptr_t srcStride) { const int shift_1st = 1 + X265_DEPTH - 8; const int shift_2nd = 8; ALIGN_VAR_32(int16_t, coef[4 * 4]); ALIGN_VAR_32(int16_t, block[4 * 4]); for (int i = 0; i < 4; i++) { memcpy(&block[i * 4], &src[i * srcStride], 4 * sizeof(int16_t)); } fastForwardDst(block, coef, shift_1st); fastForwardDst(coef, dst, shift_2nd); } void dct4_c(const int16_t* src, int16_t* dst, intptr_t srcStride) { const int shift_1st = 1 + X265_DEPTH - 8; const int shift_2nd = 8; ALIGN_VAR_32(int16_t, coef[4 * 4]); ALIGN_VAR_32(int16_t, block[4 * 4]); for (int i = 0; i < 4; i++) { memcpy(&block[i * 4], &src[i * srcStride], 4 * sizeof(int16_t)); } partialButterfly4(block, coef, shift_1st, 4); partialButterfly4(coef, dst, shift_2nd, 4); } void dct8_c(const int16_t* src, int16_t* dst, intptr_t srcStride) { const int shift_1st = 2 + X265_DEPTH - 8; const int shift_2nd = 9; ALIGN_VAR_32(int16_t, coef[8 * 8]); ALIGN_VAR_32(int16_t, block[8 * 8]); for (int i = 0; i < 8; i++) { memcpy(&block[i * 8], &src[i * srcStride], 8 * sizeof(int16_t)); } partialButterfly8(block, coef, shift_1st, 8); partialButterfly8(coef, dst, shift_2nd, 8); } void dct16_c(const int16_t* src, int16_t* dst, intptr_t srcStride) { const int shift_1st = 3 + X265_DEPTH - 8; const int shift_2nd = 10; ALIGN_VAR_32(int16_t, coef[16 * 16]); ALIGN_VAR_32(int16_t, block[16 * 16]); for (int i = 0; i < 16; i++) { memcpy(&block[i * 16], &src[i * srcStride], 16 * sizeof(int16_t)); } partialButterfly16(block, coef, shift_1st, 16); partialButterfly16(coef, dst, shift_2nd, 16); } void dct32_c(const int16_t* src, int16_t* dst, intptr_t srcStride) { const int shift_1st = 4 + X265_DEPTH - 8; const int shift_2nd = 11; ALIGN_VAR_32(int16_t, coef[32 * 32]); ALIGN_VAR_32(int16_t, block[32 * 32]); for (int i = 0; i < 32; i++) { memcpy(&block[i * 32], &src[i * srcStride], 32 * sizeof(int16_t)); } partialButterfly32(block, coef, shift_1st, 32); partialButterfly32(coef, dst, shift_2nd, 32); } void idst4_c(const int16_t* src, int16_t* dst, intptr_t dstStride) { const int shift_1st = 7; const int shift_2nd = 12 - (X265_DEPTH - 8); ALIGN_VAR_32(int16_t, coef[4 * 4]); ALIGN_VAR_32(int16_t, block[4 * 4]); inversedst(src, coef, shift_1st); // Forward DST BY FAST ALGORITHM, block input, coef output inversedst(coef, block, shift_2nd); // Forward DST BY FAST ALGORITHM, coef input, coeff output for (int i = 0; i < 4; i++) { memcpy(&dst[i * dstStride], &block[i * 4], 4 * sizeof(int16_t)); } } void idct4_c(const int16_t* src, int16_t* dst, intptr_t dstStride) { const int shift_1st = 7; const int shift_2nd = 12 - (X265_DEPTH - 8); ALIGN_VAR_32(int16_t, coef[4 * 4]); ALIGN_VAR_32(int16_t, block[4 * 4]); partialButterflyInverse4(src, coef, shift_1st, 4); // Forward DST BY FAST ALGORITHM, block input, coef output partialButterflyInverse4(coef, block, shift_2nd, 4); // Forward DST BY FAST ALGORITHM, coef input, coeff output for (int i = 0; i < 4; i++) { memcpy(&dst[i * dstStride], &block[i * 4], 4 * sizeof(int16_t)); } } void idct8_c(const int16_t* src, int16_t* dst, intptr_t dstStride) { const int shift_1st = 7; const int shift_2nd = 12 - (X265_DEPTH - 8); ALIGN_VAR_32(int16_t, coef[8 * 8]); ALIGN_VAR_32(int16_t, block[8 * 8]); partialButterflyInverse8(src, coef, shift_1st, 8); partialButterflyInverse8(coef, block, shift_2nd, 8); for (int i = 0; i < 8; i++) { memcpy(&dst[i * dstStride], &block[i * 8], 8 * sizeof(int16_t)); } } void idct16_c(const int16_t* src, int16_t* dst, intptr_t dstStride) { const int shift_1st = 7; const int shift_2nd = 12 - (X265_DEPTH - 8); ALIGN_VAR_32(int16_t, coef[16 * 16]); ALIGN_VAR_32(int16_t, block[16 * 16]); partialButterflyInverse16(src, coef, shift_1st, 16); partialButterflyInverse16(coef, block, shift_2nd, 16); for (int i = 0; i < 16; i++) { memcpy(&dst[i * dstStride], &block[i * 16], 16 * sizeof(int16_t)); } } void idct32_c(const int16_t* src, int16_t* dst, intptr_t dstStride) { const int shift_1st = 7; const int shift_2nd = 12 - (X265_DEPTH - 8); ALIGN_VAR_32(int16_t, coef[32 * 32]); ALIGN_VAR_32(int16_t, block[32 * 32]); partialButterflyInverse32(src, coef, shift_1st, 32); partialButterflyInverse32(coef, block, shift_2nd, 32); for (int i = 0; i < 32; i++) { memcpy(&dst[i * dstStride], &block[i * 32], 32 * sizeof(int16_t)); } } } // namespace X265_NS static void dequant_normal_c(const int16_t* quantCoef, int16_t* coef, int num, int scale, int shift) { #if HIGH_BIT_DEPTH X265_CHECK(scale < 32768 || ((scale & 3) == 0 && shift > (X265_DEPTH - 8)), "dequant invalid scale %d\n", scale); #else // NOTE: maximum of scale is (72 * 256) X265_CHECK(scale < 32768, "dequant invalid scale %d\n", scale); #endif X265_CHECK(num <= 32 * 32, "dequant num %d too large\n", num); X265_CHECK((num % 8) == 0, "dequant num %d not multiple of 8\n", num); X265_CHECK(shift <= 10, "shift too large %d\n", shift); X265_CHECK(((intptr_t)coef & 31) == 0, "dequant coef buffer not aligned\n"); int add, coeffQ; add = 1 << (shift - 1); for (int n = 0; n < num; n++) { coeffQ = (quantCoef[n] * scale + add) >> shift; coef[n] = (int16_t)x265_clip3(-32768, 32767, coeffQ); } } static void dequant_scaling_c(const int16_t* quantCoef, const int32_t* deQuantCoef, int16_t* coef, int num, int per, int shift) { X265_CHECK(num <= 32 * 32, "dequant num %d too large\n", num); int add, coeffQ; shift += 4; if (shift > per) { add = 1 << (shift - per - 1); for (int n = 0; n < num; n++) { coeffQ = ((quantCoef[n] * deQuantCoef[n]) + add) >> (shift - per); coef[n] = (int16_t)x265_clip3(-32768, 32767, coeffQ); } } else { for (int n = 0; n < num; n++) { coeffQ = x265_clip3(-32768, 32767, quantCoef[n] * deQuantCoef[n]); coef[n] = (int16_t)x265_clip3(-32768, 32767, coeffQ << (per - shift)); } } } static uint32_t quant_c(const int16_t* coef, const int32_t* quantCoeff, int32_t* deltaU, int16_t* qCoef, int qBits, int add, int numCoeff) { X265_CHECK(qBits >= 8, "qBits less than 8\n"); X265_CHECK((numCoeff % 16) == 0, "numCoeff must be multiple of 16\n"); int qBits8 = qBits - 8; uint32_t numSig = 0; for (int blockpos = 0; blockpos < numCoeff; blockpos++) { int level = coef[blockpos]; int sign = (level < 0 ? -1 : 1); int tmplevel = abs(level) * quantCoeff[blockpos]; level = ((tmplevel + add) >> qBits); deltaU[blockpos] = ((tmplevel - (level << qBits)) >> qBits8); if (level) ++numSig; level *= sign; qCoef[blockpos] = (int16_t)x265_clip3(-32768, 32767, level); } return numSig; } static uint32_t nquant_c(const int16_t* coef, const int32_t* quantCoeff, int16_t* qCoef, int qBits, int add, int numCoeff) { X265_CHECK((numCoeff % 16) == 0, "number of quant coeff is not multiple of 4x4\n"); X265_CHECK((uint32_t)add < ((uint32_t)1 << qBits), "2 ^ qBits less than add\n"); X265_CHECK(((intptr_t)quantCoeff & 31) == 0, "quantCoeff buffer not aligned\n"); uint32_t numSig = 0; for (int blockpos = 0; blockpos < numCoeff; blockpos++) { int level = coef[blockpos]; int sign = (level < 0 ? -1 : 1); int tmplevel = abs(level) * quantCoeff[blockpos]; level = ((tmplevel + add) >> qBits); if (level) ++numSig; level *= sign; // TODO: when we limit range to [-32767, 32767], we can get more performance with output change // But nquant is a little percent in rdoQuant, so I keep old dynamic range for compatible qCoef[blockpos] = (int16_t)abs(x265_clip3(-32768, 32767, level)); } return numSig; } template int count_nonzero_c(const int16_t* quantCoeff) { X265_CHECK(((intptr_t)quantCoeff & 15) == 0, "quant buffer not aligned\n"); int count = 0; int numCoeff = trSize * trSize; for (int i = 0; i < numCoeff; i++) { count += quantCoeff[i] != 0; } return count; } template uint32_t copy_count(int16_t* coeff, const int16_t* residual, intptr_t resiStride) { uint32_t numSig = 0; for (int k = 0; k < trSize; k++) { for (int j = 0; j < trSize; j++) { coeff[k * trSize + j] = residual[k * resiStride + j]; numSig += (residual[k * resiStride + j] != 0); } } return numSig; } static void denoiseDct_c(int16_t* dctCoef, uint32_t* resSum, const uint16_t* offset, int numCoeff) { for (int i = 0; i < numCoeff; i++) { int level = dctCoef[i]; int sign = level >> 31; level = (level + sign) ^ sign; resSum[i] += level; level -= offset[i]; dctCoef[i] = (int16_t)(level < 0 ? 0 : (level ^ sign) - sign); } } static int scanPosLast_c(const uint16_t *scan, const coeff_t *coeff, uint16_t *coeffSign, uint16_t *coeffFlag, uint8_t *coeffNum, int numSig, const uint16_t* /*scanCG4x4*/, const int /*trSize*/) { memset(coeffNum, 0, MLS_GRP_NUM * sizeof(*coeffNum)); memset(coeffFlag, 0, MLS_GRP_NUM * sizeof(*coeffFlag)); memset(coeffSign, 0, MLS_GRP_NUM * sizeof(*coeffSign)); int scanPosLast = 0; do { const uint32_t cgIdx = (uint32_t)scanPosLast >> MLS_CG_SIZE; const uint32_t posLast = scan[scanPosLast++]; const int curCoeff = coeff[posLast]; const uint32_t isNZCoeff = (curCoeff != 0); // get L1 sig map // NOTE: the new algorithm is complicated, so I keep reference code here //uint32_t posy = posLast >> log2TrSize; //uint32_t posx = posLast - (posy << log2TrSize); //uint32_t blkIdx0 = ((posy >> MLS_CG_LOG2_SIZE) << codingParameters.log2TrSizeCG) + (posx >> MLS_CG_LOG2_SIZE); //const uint32_t blkIdx = ((posLast >> (2 * MLS_CG_LOG2_SIZE)) & ~maskPosXY) + ((posLast >> MLS_CG_LOG2_SIZE) & maskPosXY); //sigCoeffGroupFlag64 |= ((uint64_t)isNZCoeff << blkIdx); numSig -= isNZCoeff; // TODO: optimize by instruction BTS coeffSign[cgIdx] += (uint16_t)(((uint32_t)curCoeff >> 31) << coeffNum[cgIdx]); coeffFlag[cgIdx] = (coeffFlag[cgIdx] << 1) + (uint16_t)isNZCoeff; coeffNum[cgIdx] += (uint8_t)isNZCoeff; } while (numSig > 0); return scanPosLast - 1; } // NOTE: no defined value on lastNZPosInCG & absSumSign when ALL ZEROS block as input static uint32_t findPosFirstLast_c(const int16_t *dstCoeff, const intptr_t trSize, const uint16_t scanTbl[16]) { int n; for (n = SCAN_SET_SIZE - 1; n >= 0; n--) { const uint32_t idx = scanTbl[n]; const uint32_t idxY = idx / MLS_CG_SIZE; const uint32_t idxX = idx % MLS_CG_SIZE; if (dstCoeff[idxY * trSize + idxX]) break; } X265_CHECK(n >= -1, "non-zero coeff scan failuare!\n"); uint32_t lastNZPosInCG = (uint32_t)n; for (n = 0; n < SCAN_SET_SIZE; n++) { const uint32_t idx = scanTbl[n]; const uint32_t idxY = idx / MLS_CG_SIZE; const uint32_t idxX = idx % MLS_CG_SIZE; if (dstCoeff[idxY * trSize + idxX]) break; } uint32_t firstNZPosInCG = (uint32_t)n; uint32_t absSumSign = 0; for (n = firstNZPosInCG; n <= (int)lastNZPosInCG; n++) { const uint32_t idx = scanTbl[n]; const uint32_t idxY = idx / MLS_CG_SIZE; const uint32_t idxX = idx % MLS_CG_SIZE; absSumSign += dstCoeff[idxY * trSize + idxX]; } // NOTE: when coeff block all ZERO, the lastNZPosInCG is undefined and firstNZPosInCG is 16 return ((absSumSign << 31) | (lastNZPosInCG << 8) | firstNZPosInCG); } static uint32_t costCoeffNxN_c(const uint16_t *scan, const coeff_t *coeff, intptr_t trSize, uint16_t *absCoeff, const uint8_t *tabSigCtx, uint32_t scanFlagMask, uint8_t *baseCtx, int offset, int scanPosSigOff, int subPosBase) { ALIGN_VAR_32(uint16_t, tmpCoeff[SCAN_SET_SIZE]); uint32_t numNonZero = (scanPosSigOff < (SCAN_SET_SIZE - 1) ? 1 : 0); uint32_t sum = 0; // correct offset to match assembly absCoeff -= numNonZero; for (int i = 0; i < MLS_CG_SIZE; i++) { tmpCoeff[i * MLS_CG_SIZE + 0] = (uint16_t)abs(coeff[i * trSize + 0]); tmpCoeff[i * MLS_CG_SIZE + 1] = (uint16_t)abs(coeff[i * trSize + 1]); tmpCoeff[i * MLS_CG_SIZE + 2] = (uint16_t)abs(coeff[i * trSize + 2]); tmpCoeff[i * MLS_CG_SIZE + 3] = (uint16_t)abs(coeff[i * trSize + 3]); } do { uint32_t blkPos, sig, ctxSig; blkPos = scan[scanPosSigOff]; const uint32_t posZeroMask = (subPosBase + scanPosSigOff) ? ~0 : 0; sig = scanFlagMask & 1; scanFlagMask >>= 1; X265_CHECK((uint32_t)(tmpCoeff[blkPos] != 0) == sig, "sign bit mistake\n"); if ((scanPosSigOff != 0) || (subPosBase == 0) || numNonZero) { const uint32_t cnt = tabSigCtx[blkPos] + offset; ctxSig = cnt & posZeroMask; //X265_CHECK(ctxSig == Quant::getSigCtxInc(patternSigCtx, log2TrSize, trSize, codingParameters.scan[subPosBase + scanPosSigOff], bIsLuma, codingParameters.firstSignificanceMapContext), "sigCtx mistake!\n");; //encodeBin(sig, baseCtx[ctxSig]); const uint32_t mstate = baseCtx[ctxSig]; const uint32_t mps = mstate & 1; const uint32_t stateBits = PFX(entropyStateBits)[mstate ^ sig]; uint32_t nextState = (stateBits >> 24) + mps; if ((mstate ^ sig) == 1) nextState = sig; X265_CHECK(sbacNext(mstate, sig) == nextState, "nextState check failure\n"); X265_CHECK(sbacGetEntropyBits(mstate, sig) == (stateBits & 0xFFFFFF), "entropyBits check failure\n"); baseCtx[ctxSig] = (uint8_t)nextState; sum += stateBits; } assert(numNonZero <= 15); assert(blkPos <= 15); absCoeff[numNonZero] = tmpCoeff[blkPos]; numNonZero += sig; scanPosSigOff--; } while(scanPosSigOff >= 0); return (sum & 0xFFFFFF); } static uint32_t costCoeffRemain_c(uint16_t *absCoeff, int numNonZero, int idx) { uint32_t goRiceParam = 0; uint32_t sum = 0; int baseLevel = 3; do { if (idx >= C1FLAG_NUMBER) baseLevel = 1; // TODO: the IDX is not really idx, so this check inactive //X265_CHECK(baseLevel == ((idx < C1FLAG_NUMBER) ? (2 + firstCoeff2) : 1), "baseLevel check failurr\n"); int codeNumber = absCoeff[idx] - baseLevel; if (codeNumber >= 0) { //writeCoefRemainExGolomb(absCoeff[idx] - baseLevel, goRiceParam); uint32_t length = 0; codeNumber = ((uint32_t)codeNumber >> goRiceParam) - COEF_REMAIN_BIN_REDUCTION; if (codeNumber >= 0) { { unsigned long cidx; CLZ(cidx, codeNumber + 1); length = cidx; } X265_CHECK((codeNumber != 0) || (length == 0), "length check failure\n"); codeNumber = (length + length); } sum += (COEF_REMAIN_BIN_REDUCTION + 1 + goRiceParam + codeNumber); if (absCoeff[idx] > (COEF_REMAIN_BIN_REDUCTION << goRiceParam)) goRiceParam = (goRiceParam + 1) - (goRiceParam >> 2); X265_CHECK(goRiceParam <= 4, "goRiceParam check failure\n"); } baseLevel = 2; idx++; } while(idx < numNonZero); return sum; } static uint32_t costC1C2Flag_c(uint16_t *absCoeff, intptr_t numC1Flag, uint8_t *baseCtxMod, intptr_t ctxOffset) { uint32_t sum = 0; uint32_t c1 = 1; uint32_t firstC2Idx = 8; uint32_t firstC2Flag = 2; uint32_t c1Next = 0xFFFFFFFE; int idx = 0; do { uint32_t symbol1 = absCoeff[idx] > 1; uint32_t symbol2 = absCoeff[idx] > 2; //encodeBin(symbol1, baseCtxMod[c1]); { const uint32_t mstate = baseCtxMod[c1]; baseCtxMod[c1] = sbacNext(mstate, symbol1); sum += sbacGetEntropyBits(mstate, symbol1); } if (symbol1) c1Next = 0; if (symbol1 + firstC2Flag == 3) firstC2Flag = symbol2; if (symbol1 + firstC2Idx == 9) firstC2Idx = idx; c1 = (c1Next & 3); c1Next >>= 2; X265_CHECK(c1 <= 3, "c1 check failure\n"); idx++; } while(idx < numC1Flag); if (!c1) { X265_CHECK((firstC2Flag <= 1), "firstC2FlagIdx check failure\n"); baseCtxMod += ctxOffset; //encodeBin(firstC2Flag, baseCtxMod[0]); { const uint32_t mstate = baseCtxMod[0]; baseCtxMod[0] = sbacNext(mstate, firstC2Flag); sum += sbacGetEntropyBits(mstate, firstC2Flag); } } return (sum & 0x00FFFFFF) + (c1 << 26) + (firstC2Idx << 28); } template static void nonPsyRdoQuant_c(int16_t *m_resiDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, uint32_t blkPos) { const int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH - log2TrSize; /* Represents scaling through forward transform */ const int scaleBits = SCALE_BITS - 2 * transformShift; const uint32_t trSize = 1 << log2TrSize; for (int y = 0; y < MLS_CG_SIZE; y++) { for (int x = 0; x < MLS_CG_SIZE; x++) { int64_t signCoef = m_resiDctCoeff[blkPos + x]; /* pre-quantization DCT coeff */ costUncoded[blkPos + x] = static_cast((double)((signCoef * signCoef) << scaleBits)); *totalUncodedCost += costUncoded[blkPos + x]; *totalRdCost += costUncoded[blkPos + x]; } blkPos += trSize; } } template static void psyRdoQuant_c(int16_t *m_resiDctCoeff, int16_t *m_fencDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, int64_t *psyScale, uint32_t blkPos) { const int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH - log2TrSize; /* Represents scaling through forward transform */ const int scaleBits = SCALE_BITS - 2 * transformShift; const uint32_t trSize = 1 << log2TrSize; int max = X265_MAX(0, (2 * transformShift + 1)); for (int y = 0; y < MLS_CG_SIZE; y++) { for (int x = 0; x < MLS_CG_SIZE; x++) { int64_t signCoef = m_resiDctCoeff[blkPos + x]; /* pre-quantization DCT coeff */ int64_t predictedCoef = m_fencDctCoeff[blkPos + x] - signCoef; /* predicted DCT = source DCT - residual DCT*/ costUncoded[blkPos + x] = static_cast((double)((signCoef * signCoef) << scaleBits)); /* when no residual coefficient is coded, predicted coef == recon coef */ costUncoded[blkPos + x] -= static_cast((double)(((*psyScale) * predictedCoef) >> max)); *totalUncodedCost += costUncoded[blkPos + x]; *totalRdCost += costUncoded[blkPos + x]; } blkPos += trSize; } } template static void psyRdoQuant_c_1(int16_t *m_resiDctCoeff, /*int16_t *m_fencDctCoeff, */ int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, /* int64_t *psyScale,*/ uint32_t blkPos) { const int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH - log2TrSize; /* Represents scaling through forward transform */ const int scaleBits = SCALE_BITS - 2 * transformShift; const uint32_t trSize = 1 << log2TrSize; for (int y = 0; y < MLS_CG_SIZE; y++) { for (int x = 0; x < MLS_CG_SIZE; x++) { int64_t signCoef = m_resiDctCoeff[blkPos + x]; /* pre-quantization DCT coeff */ costUncoded[blkPos + x] = static_cast((double)((signCoef * signCoef) << scaleBits)); *totalUncodedCost += costUncoded[blkPos + x]; *totalRdCost += costUncoded[blkPos + x]; } blkPos += trSize; } } template static void psyRdoQuant_c_2(int16_t *m_resiDctCoeff, int16_t *m_fencDctCoeff, int64_t *costUncoded, int64_t *totalUncodedCost, int64_t *totalRdCost, int64_t *psyScale, uint32_t blkPos) { const int transformShift = MAX_TR_DYNAMIC_RANGE - X265_DEPTH - log2TrSize; /* Represents scaling through forward transform */ const uint32_t trSize = 1 << log2TrSize; int max = X265_MAX(0, (2 * transformShift + 1)); for (int y = 0; y < MLS_CG_SIZE; y++) { for (int x = 0; x < MLS_CG_SIZE; x++) { int64_t signCoef = m_resiDctCoeff[blkPos + x]; /* pre-quantization DCT coeff */ int64_t predictedCoef = m_fencDctCoeff[blkPos + x] - signCoef; /* predicted DCT = source DCT - residual DCT*/ costUncoded[blkPos + x] -= static_cast((double)(((*psyScale) * predictedCoef) >> max)); *totalUncodedCost += costUncoded[blkPos + x]; *totalRdCost += costUncoded[blkPos + x]; } blkPos += trSize; } } namespace X265_NS { // x265 private namespace void setupDCTPrimitives_c(EncoderPrimitives& p) { p.dequant_scaling = dequant_scaling_c; p.dequant_normal = dequant_normal_c; p.quant = quant_c; p.nquant = nquant_c; p.cu[BLOCK_4x4].nonPsyRdoQuant = nonPsyRdoQuant_c<2>; p.cu[BLOCK_8x8].nonPsyRdoQuant = nonPsyRdoQuant_c<3>; p.cu[BLOCK_16x16].nonPsyRdoQuant = nonPsyRdoQuant_c<4>; p.cu[BLOCK_32x32].nonPsyRdoQuant = nonPsyRdoQuant_c<5>; p.cu[BLOCK_4x4].psyRdoQuant = psyRdoQuant_c<2>; p.cu[BLOCK_8x8].psyRdoQuant = psyRdoQuant_c<3>; p.cu[BLOCK_16x16].psyRdoQuant = psyRdoQuant_c<4>; p.cu[BLOCK_32x32].psyRdoQuant = psyRdoQuant_c<5>; p.dst4x4 = dst4_c; p.cu[BLOCK_4x4].dct = dct4_c; p.cu[BLOCK_8x8].dct = dct8_c; p.cu[BLOCK_16x16].dct = dct16_c; p.cu[BLOCK_32x32].dct = dct32_c; p.idst4x4 = idst4_c; p.cu[BLOCK_4x4].idct = idct4_c; p.cu[BLOCK_8x8].idct = idct8_c; p.cu[BLOCK_16x16].idct = idct16_c; p.cu[BLOCK_32x32].idct = idct32_c; p.denoiseDct = denoiseDct_c; p.cu[BLOCK_4x4].count_nonzero = count_nonzero_c<4>; p.cu[BLOCK_8x8].count_nonzero = count_nonzero_c<8>; p.cu[BLOCK_16x16].count_nonzero = count_nonzero_c<16>; p.cu[BLOCK_32x32].count_nonzero = count_nonzero_c<32>; p.cu[BLOCK_4x4].copy_cnt = copy_count<4>; p.cu[BLOCK_8x8].copy_cnt = copy_count<8>; p.cu[BLOCK_16x16].copy_cnt = copy_count<16>; p.cu[BLOCK_32x32].copy_cnt = copy_count<32>; p.cu[BLOCK_4x4].psyRdoQuant_1p = psyRdoQuant_c_1<2>; p.cu[BLOCK_4x4].psyRdoQuant_2p = psyRdoQuant_c_2<2>; p.cu[BLOCK_8x8].psyRdoQuant_1p = psyRdoQuant_c_1<3>; p.cu[BLOCK_8x8].psyRdoQuant_2p = psyRdoQuant_c_2<3>; p.cu[BLOCK_16x16].psyRdoQuant_1p = psyRdoQuant_c_1<4>; p.cu[BLOCK_16x16].psyRdoQuant_2p = psyRdoQuant_c_2<4>; p.cu[BLOCK_32x32].psyRdoQuant_1p = psyRdoQuant_c_1<5>; p.cu[BLOCK_32x32].psyRdoQuant_2p = psyRdoQuant_c_2<5>; p.scanPosLast = scanPosLast_c; p.findPosFirstLast = findPosFirstLast_c; p.costCoeffNxN = costCoeffNxN_c; p.costCoeffRemain = costCoeffRemain_c; p.costC1C2Flag = costC1C2Flag_c; } }