/***************************************************************************** * Copyright (C) 2013-2020 MulticoreWare, Inc * * Authors: Steve Borho * Min Chen * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA. * * This program is also available under a commercial proprietary license. * For more information, contact us at license @ x265.com. *****************************************************************************/ #include "common.h" #include "picyuv.h" #include "slice.h" #include "primitives.h" using namespace X265_NS; PicYuv::PicYuv() { m_picBuf[0] = NULL; m_picBuf[1] = NULL; m_picBuf[2] = NULL; m_picOrg[0] = NULL; m_picOrg[1] = NULL; m_picOrg[2] = NULL; m_cuOffsetY = NULL; m_cuOffsetC = NULL; m_buOffsetY = NULL; m_buOffsetC = NULL; m_maxLumaLevel = 0; m_avgLumaLevel = 0; m_maxChromaULevel = 0; m_avgChromaULevel = 0; m_maxChromaVLevel = 0; m_avgChromaVLevel = 0; #if (X265_DEPTH > 8) m_minLumaLevel = 0xFFFF; m_minChromaULevel = 0xFFFF; m_minChromaVLevel = 0xFFFF; #else m_minLumaLevel = 0xFF; m_minChromaULevel = 0xFF; m_minChromaVLevel = 0xFF; #endif m_stride = 0; m_strideC = 0; m_hChromaShift = 0; m_vChromaShift = 0; } bool PicYuv::create(x265_param* param, bool picAlloc, pixel *pixelbuf) { m_param = param; uint32_t picWidth = m_param->sourceWidth; uint32_t picHeight = m_param->sourceHeight; uint32_t picCsp = m_param->internalCsp; m_picWidth = picWidth; m_picHeight = picHeight; m_hChromaShift = CHROMA_H_SHIFT(picCsp); m_vChromaShift = CHROMA_V_SHIFT(picCsp); m_picCsp = picCsp; uint32_t numCuInWidth = (m_picWidth + param->maxCUSize - 1) / param->maxCUSize; uint32_t numCuInHeight = (m_picHeight + param->maxCUSize - 1) / param->maxCUSize; m_lumaMarginX = param->maxCUSize + 32; // search margin and 8-tap filter half-length, padded for 32-byte alignment m_lumaMarginY = param->maxCUSize + 16; // margin for 8-tap filter and infinite padding m_stride = (numCuInWidth * param->maxCUSize) + (m_lumaMarginX << 1); int maxHeight = numCuInHeight * param->maxCUSize; if (pixelbuf) m_picOrg[0] = pixelbuf; else { if (picAlloc) { CHECKED_MALLOC(m_picBuf[0], pixel, m_stride * (maxHeight + (m_lumaMarginY * 2))); m_picOrg[0] = m_picBuf[0] + m_lumaMarginY * m_stride + m_lumaMarginX; } } if (picCsp != X265_CSP_I400) { m_chromaMarginX = m_lumaMarginX; // keep 16-byte alignment for chroma CTUs m_chromaMarginY = m_lumaMarginY >> m_vChromaShift; m_strideC = ((numCuInWidth * m_param->maxCUSize) >> m_hChromaShift) + (m_chromaMarginX * 2); if (picAlloc) { CHECKED_MALLOC(m_picBuf[1], pixel, m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2))); CHECKED_MALLOC(m_picBuf[2], pixel, m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2))); m_picOrg[1] = m_picBuf[1] + m_chromaMarginY * m_strideC + m_chromaMarginX; m_picOrg[2] = m_picBuf[2] + m_chromaMarginY * m_strideC + m_chromaMarginX; } } else { m_picBuf[1] = m_picBuf[2] = NULL; m_picOrg[1] = m_picOrg[2] = NULL; } return true; fail: return false; } /*Copy pixels from the picture buffer of a frame to picture buffer of another frame*/ void PicYuv::copyFromFrame(PicYuv* source) { uint32_t numCuInHeight = (m_picHeight + m_param->maxCUSize - 1) / m_param->maxCUSize; int maxHeight = numCuInHeight * m_param->maxCUSize; memcpy(m_picBuf[0], source->m_picBuf[0], sizeof(pixel)* m_stride * (maxHeight + (m_lumaMarginY * 2))); m_picOrg[0] = m_picBuf[0] + m_lumaMarginY * m_stride + m_lumaMarginX; if (m_picCsp != X265_CSP_I400) { memcpy(m_picBuf[1], source->m_picBuf[1], sizeof(pixel)* m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2))); memcpy(m_picBuf[2], source->m_picBuf[2], sizeof(pixel)* m_strideC * ((maxHeight >> m_vChromaShift) + (m_chromaMarginY * 2))); m_picOrg[1] = m_picBuf[1] + m_chromaMarginY * m_strideC + m_chromaMarginX; m_picOrg[2] = m_picBuf[2] + m_chromaMarginY * m_strideC + m_chromaMarginX; } else { m_picBuf[1] = m_picBuf[2] = NULL; m_picOrg[1] = m_picOrg[2] = NULL; } } bool PicYuv::createScaledPicYUV(x265_param* param, uint8_t scaleFactor) { m_param = param; m_picWidth = m_param->sourceWidth / scaleFactor; m_picHeight = m_param->sourceHeight / scaleFactor; m_picCsp = m_param->internalCsp; m_hChromaShift = CHROMA_H_SHIFT(m_picCsp); m_vChromaShift = CHROMA_V_SHIFT(m_picCsp); uint32_t numCuInWidth = (m_picWidth + param->maxCUSize - 1) / param->maxCUSize; uint32_t numCuInHeight = (m_picHeight + param->maxCUSize - 1) / param->maxCUSize; m_lumaMarginX = 128; // search margin for L0 and L1 ME in horizontal direction m_lumaMarginY = 128; // search margin for L0 and L1 ME in vertical direction m_stride = (numCuInWidth * param->maxCUSize) + (m_lumaMarginX << 1); int maxHeight = numCuInHeight * param->maxCUSize; CHECKED_MALLOC_ZERO(m_picBuf[0], pixel, m_stride * (maxHeight + (m_lumaMarginY * 2))); m_picOrg[0] = m_picBuf[0] + m_lumaMarginY * m_stride + m_lumaMarginX; m_picBuf[1] = m_picBuf[2] = NULL; m_picOrg[1] = m_picOrg[2] = NULL; return true; fail: return false; } int PicYuv::getLumaBufLen(uint32_t picWidth, uint32_t picHeight, uint32_t picCsp) { m_picWidth = picWidth; m_picHeight = picHeight; m_hChromaShift = CHROMA_H_SHIFT(picCsp); m_vChromaShift = CHROMA_V_SHIFT(picCsp); m_picCsp = picCsp; uint32_t numCuInWidth = (m_picWidth + m_param->maxCUSize - 1) / m_param->maxCUSize; uint32_t numCuInHeight = (m_picHeight + m_param->maxCUSize - 1) / m_param->maxCUSize; m_lumaMarginX = m_param->maxCUSize + 32; // search margin and 8-tap filter half-length, padded for 32-byte alignment m_lumaMarginY = m_param->maxCUSize + 16; // margin for 8-tap filter and infinite padding m_stride = (numCuInWidth * m_param->maxCUSize) + (m_lumaMarginX << 1); int maxHeight = numCuInHeight * m_param->maxCUSize; int bufLen = (int)(m_stride * (maxHeight + (m_lumaMarginY * 2))); return bufLen; } /* the first picture allocated by the encoder will be asked to generate these * offset arrays. Once generated, they will be provided to all future PicYuv * allocated by the same encoder. */ bool PicYuv::createOffsets(const SPS& sps) { uint32_t numPartitions = 1 << (m_param->unitSizeDepth * 2); if (m_picCsp != X265_CSP_I400) { CHECKED_MALLOC(m_cuOffsetY, intptr_t, sps.numCuInWidth * sps.numCuInHeight); CHECKED_MALLOC(m_cuOffsetC, intptr_t, sps.numCuInWidth * sps.numCuInHeight); for (uint32_t cuRow = 0; cuRow < sps.numCuInHeight; cuRow++) { for (uint32_t cuCol = 0; cuCol < sps.numCuInWidth; cuCol++) { m_cuOffsetY[cuRow * sps.numCuInWidth + cuCol] = m_stride * cuRow * m_param->maxCUSize + cuCol * m_param->maxCUSize; m_cuOffsetC[cuRow * sps.numCuInWidth + cuCol] = m_strideC * cuRow * (m_param->maxCUSize >> m_vChromaShift) + cuCol * (m_param->maxCUSize >> m_hChromaShift); } } CHECKED_MALLOC(m_buOffsetY, intptr_t, (size_t)numPartitions); CHECKED_MALLOC(m_buOffsetC, intptr_t, (size_t)numPartitions); for (uint32_t idx = 0; idx < numPartitions; ++idx) { intptr_t x = g_zscanToPelX[idx]; intptr_t y = g_zscanToPelY[idx]; m_buOffsetY[idx] = m_stride * y + x; m_buOffsetC[idx] = m_strideC * (y >> m_vChromaShift) + (x >> m_hChromaShift); } } else { CHECKED_MALLOC(m_cuOffsetY, intptr_t, sps.numCuInWidth * sps.numCuInHeight); for (uint32_t cuRow = 0; cuRow < sps.numCuInHeight; cuRow++) for (uint32_t cuCol = 0; cuCol < sps.numCuInWidth; cuCol++) m_cuOffsetY[cuRow * sps.numCuInWidth + cuCol] = m_stride * cuRow * m_param->maxCUSize + cuCol * m_param->maxCUSize; CHECKED_MALLOC(m_buOffsetY, intptr_t, (size_t)numPartitions); for (uint32_t idx = 0; idx < numPartitions; ++idx) { intptr_t x = g_zscanToPelX[idx]; intptr_t y = g_zscanToPelY[idx]; m_buOffsetY[idx] = m_stride * y + x; } } return true; fail: return false; } void PicYuv::destroy() { X265_FREE(m_picBuf[0]); X265_FREE(m_picBuf[1]); X265_FREE(m_picBuf[2]); } /* Copy pixels from an x265_picture into internal PicYuv instance. * Shift pixels as necessary, mask off bits above X265_DEPTH for safety. */ void PicYuv::copyFromPicture(const x265_picture& pic, const x265_param& param, int padx, int pady, bool isBase) { /* m_picWidth is the width that is being encoded, padx indicates how many * of those pixels are padding to reach multiple of MinCU(4) size. * * Internally, we need to extend rows out to a multiple of 16 for lowres * downscale and other operations. But those padding pixels are never * encoded. * * The same applies to m_picHeight and pady */ /* width and height - without padsize (input picture raw width and height) */ int width = m_picWidth - padx; int height = m_picHeight - pady; /* internal pad to multiple of 16x16 blocks */ uint8_t rem = width & 15; padx = rem ? 16 - rem : padx; rem = height & 15; pady = rem ? 16 - rem : pady; /* add one more row and col of pad for downscale interpolation, fixes * warnings from valgrind about using uninitialized pixels */ padx++; pady++; m_picCsp = pic.colorSpace; X265_CHECK(pic.bitDepth >= 8, "pic.bitDepth check failure"); uint64_t lumaSum; uint64_t cbSum; uint64_t crSum; lumaSum = cbSum = crSum = 0; if (m_param->bCopyPicToFrame) { if (pic.bitDepth == 8) { #if (X265_DEPTH > 8) { pixel *yPixel = m_picOrg[0]; uint8_t *yChar = (uint8_t*)pic.planes[0]; int shift = (X265_DEPTH - 8); primitives.planecopy_cp(yChar, pic.stride[0] / sizeof(*yChar), yPixel, m_stride, width, height, shift); if (param.internalCsp != X265_CSP_I400) { pixel *uPixel = m_picOrg[1]; pixel *vPixel = m_picOrg[2]; uint8_t *uChar = (uint8_t*)pic.planes[1]; uint8_t *vChar = (uint8_t*)pic.planes[2]; primitives.planecopy_cp(uChar, pic.stride[1] / sizeof(*uChar), uPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift); primitives.planecopy_cp(vChar, pic.stride[2] / sizeof(*vChar), vPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift); } } #else /* Case for (X265_DEPTH == 8) */ // TODO: Does we need this path? may merge into above in future { if (isBase || param.numViews > 1) { int offsetX, offsetY; offsetX = (!isBase && pic.format == 1 ? width : 0); offsetY = (!isBase && pic.format == 2 ? pic.stride[0] * height : 0); pixel *yPixel = m_picOrg[0]; uint8_t* yChar = (uint8_t*)pic.planes[0] + offsetX + offsetY; for (int r = 0; r < height; r++) { memcpy(yPixel, yChar, width * sizeof(pixel)); yPixel += m_stride; yChar += pic.stride[0] / sizeof(*yChar); } if (param.internalCsp != X265_CSP_I400) { offsetX = offsetX >> m_hChromaShift; int offsetYU = (!isBase && pic.format == 2 ? pic.stride[1] * (height >> m_vChromaShift) : 0); int offsetYV = (!isBase && pic.format == 2 ? pic.stride[2] * (height >> m_vChromaShift) : 0); pixel *uPixel = m_picOrg[1]; pixel *vPixel = m_picOrg[2]; uint8_t* uChar = (uint8_t*)pic.planes[1] + offsetX + offsetYU; uint8_t* vChar = (uint8_t*)pic.planes[2] + offsetX + offsetYV; for (int r = 0; r < height >> m_vChromaShift; r++) { memcpy(uPixel, uChar, (width >> m_hChromaShift) * sizeof(pixel)); memcpy(vPixel, vChar, (width >> m_hChromaShift) * sizeof(pixel)); uPixel += m_strideC; vPixel += m_strideC; uChar += pic.stride[1] / sizeof(*uChar); vChar += pic.stride[2] / sizeof(*vChar); } } } #if ENABLE_ALPHA if (!isBase && param.bEnableAlpha) { pixel* aPixel = m_picOrg[0]; uint8_t* aChar = (uint8_t*)pic.planes[3]; for (int r = 0; r < height; r++) { memcpy(aPixel, aChar, width * sizeof(pixel)); aPixel += m_stride; aChar += pic.stride[0] / sizeof(*aChar); } pixel* uPixel = m_picOrg[1]; pixel* vPixel = m_picOrg[2]; for (int r = 0; r < height >> m_vChromaShift; r++) { memset(uPixel, 128, (width >> m_hChromaShift) * sizeof(pixel)); memset(vPixel, 128, (width >> m_hChromaShift) * sizeof(pixel)); uPixel += m_strideC; vPixel += m_strideC; } } #endif } #endif /* (X265_DEPTH > 8) */ } else /* pic.bitDepth > 8 */ { /* defensive programming, mask off bits that are supposed to be zero */ if (isBase) { uint16_t mask = (1 << X265_DEPTH) - 1; int shift = abs(pic.bitDepth - X265_DEPTH); pixel* yPixel = m_picOrg[0]; uint16_t* yShort = (uint16_t*)pic.planes[0]; if (pic.bitDepth > X265_DEPTH) { /* shift right and mask pixels to final size */ primitives.planecopy_sp(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask); } else /* Case for (pic.bitDepth <= X265_DEPTH) */ { /* shift left and mask pixels to final size */ primitives.planecopy_sp_shl(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask); } if (param.internalCsp != X265_CSP_I400) { pixel* uPixel = m_picOrg[1]; pixel* vPixel = m_picOrg[2]; uint16_t* uShort = (uint16_t*)pic.planes[1]; uint16_t* vShort = (uint16_t*)pic.planes[2]; if (pic.bitDepth > X265_DEPTH) { primitives.planecopy_sp(uShort, pic.stride[1] / sizeof(*uShort), uPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask); primitives.planecopy_sp(vShort, pic.stride[2] / sizeof(*vShort), vPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask); } else /* Case for (pic.bitDepth <= X265_DEPTH) */ { primitives.planecopy_sp_shl(uShort, pic.stride[1] / sizeof(*uShort), uPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask); primitives.planecopy_sp_shl(vShort, pic.stride[2] / sizeof(*vShort), vPixel, m_strideC, width >> m_hChromaShift, height >> m_vChromaShift, shift, mask); } } } #if ENABLE_ALPHA if (!isBase && param.bEnableAlpha) { /* defensive programming, mask off bits that are supposed to be zero */ uint16_t mask = (1 << X265_DEPTH) - 1; int shift = abs(pic.bitDepth - X265_DEPTH); pixel* yPixel = m_picOrg[0]; uint16_t* yShort = (uint16_t*)pic.planes[3]; if (pic.bitDepth > X265_DEPTH) { /* shift right and mask pixels to final size */ primitives.planecopy_sp(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask); } else /* Case for (pic.bitDepth <= X265_DEPTH) */ { /* shift left and mask pixels to final size */ primitives.planecopy_sp_shl(yShort, pic.stride[0] / sizeof(*yShort), yPixel, m_stride, width, height, shift, mask); } if (param.internalCsp != X265_CSP_I400) { pixel* uPixel = m_picOrg[1]; pixel* vPixel = m_picOrg[2]; for (int r = 0; r < height >> m_vChromaShift; r++) { for (int c = 0; c < (width >> m_hChromaShift); c++) { uPixel[c] = ((1 << X265_DEPTH) >> 1); vPixel[c] = ((1 << X265_DEPTH) >> 1); } uPixel += m_strideC; vPixel += m_strideC; } } } #endif } } else { m_picOrg[0] = (pixel*)pic.planes[0]; m_picOrg[1] = (pixel*)pic.planes[1]; m_picOrg[2] = (pixel*)pic.planes[2]; } pixel *Y = m_picOrg[0]; pixel *U = m_picOrg[1]; pixel *V = m_picOrg[2]; pixel *yPic = m_picOrg[0]; pixel *uPic = m_picOrg[1]; pixel *vPic = m_picOrg[2]; if(param.minLuma != 0 || param.maxLuma != PIXEL_MAX) { for (int r = 0; r < height; r++) { for (int c = 0; c < width; c++) { yPic[c] = X265_MIN(yPic[c], (pixel)param.maxLuma); yPic[c] = X265_MAX(yPic[c], (pixel)param.minLuma); } yPic += m_stride; } } yPic = m_picOrg[0]; if (param.csvLogLevel >= 2 || param.maxCLL || param.maxFALL) { for (int r = 0; r < height; r++) { for (int c = 0; c < width; c++) { m_maxLumaLevel = X265_MAX(yPic[c], m_maxLumaLevel); m_minLumaLevel = X265_MIN(yPic[c], m_minLumaLevel); lumaSum += yPic[c]; } yPic += m_stride; } m_avgLumaLevel = (double)lumaSum / (m_picHeight * m_picWidth); } if (param.csvLogLevel >= 2) { if (param.internalCsp != X265_CSP_I400) { for (int r = 0; r < height >> m_vChromaShift; r++) { for (int c = 0; c < width >> m_hChromaShift; c++) { m_maxChromaULevel = X265_MAX(uPic[c], m_maxChromaULevel); m_minChromaULevel = X265_MIN(uPic[c], m_minChromaULevel); cbSum += uPic[c]; m_maxChromaVLevel = X265_MAX(vPic[c], m_maxChromaVLevel); m_minChromaVLevel = X265_MIN(vPic[c], m_minChromaVLevel); crSum += vPic[c]; } uPic += m_strideC; vPic += m_strideC; } m_avgChromaULevel = (double)cbSum / ((height >> m_vChromaShift) * (width >> m_hChromaShift)); m_avgChromaVLevel = (double)crSum / ((height >> m_vChromaShift) * (width >> m_hChromaShift)); } } #if HIGH_BIT_DEPTH bool calcHDRParams = !!param.minLuma || (param.maxLuma != PIXEL_MAX); /* Apply min/max luma bounds for HDR pixel manipulations */ if (calcHDRParams) { X265_CHECK(pic.bitDepth == 10, "HDR stats can be applied/calculated only for 10bpp content"); uint64_t sumLuma; m_maxLumaLevel = primitives.planeClipAndMax(Y, m_stride, width, height, &sumLuma, (pixel)param.minLuma, (pixel)param.maxLuma); m_avgLumaLevel = (double) sumLuma / (m_picHeight * m_picWidth); } #else (void) param; #endif /* extend the right edge if width was not multiple of the minimum CU size */ for (int r = 0; r < height; r++) { for (int x = 0; x < padx; x++) Y[width + x] = Y[width - 1]; Y += m_stride; } /* extend the bottom if height was not multiple of the minimum CU size */ Y = m_picOrg[0] + (height - 1) * m_stride; for (int i = 1; i <= pady; i++) memcpy(Y + i * m_stride, Y, (width + padx) * sizeof(pixel)); if (param.internalCsp != X265_CSP_I400) { for (int r = 0; r < height >> m_vChromaShift; r++) { for (int x = 0; x < padx >> m_hChromaShift; x++) { U[(width >> m_hChromaShift) + x] = U[(width >> m_hChromaShift) - 1]; V[(width >> m_hChromaShift) + x] = V[(width >> m_hChromaShift) - 1]; } U += m_strideC; V += m_strideC; } U = m_picOrg[1] + ((height >> m_vChromaShift) - 1) * m_strideC; V = m_picOrg[2] + ((height >> m_vChromaShift) - 1) * m_strideC; for (int j = 1; j <= pady >> m_vChromaShift; j++) { memcpy(U + j * m_strideC, U, ((width + padx) >> m_hChromaShift) * sizeof(pixel)); memcpy(V + j * m_strideC, V, ((width + padx) >> m_hChromaShift) * sizeof(pixel)); } } } namespace X265_NS { template static void md5_block(MD5Context& md5, const pixel* plane, uint32_t n) { /* create a 64 byte buffer for packing pixel's into */ uint8_t buf[64 / OUTPUT_BITDEPTH_DIV8][OUTPUT_BITDEPTH_DIV8]; for (uint32_t i = 0; i < n; i++) { pixel pel = plane[i]; /* perform bitdepth and endian conversion */ for (uint32_t d = 0; d < OUTPUT_BITDEPTH_DIV8; d++) buf[i][d] = (uint8_t)(pel >> (d * 8)); } MD5Update(&md5, (uint8_t*)buf, n * OUTPUT_BITDEPTH_DIV8); } /* Update md5 with all samples in plane in raster order, each sample * is adjusted to OUTBIT_BITDEPTH_DIV8 */ template static void md5_plane(MD5Context& md5, const pixel* plane, uint32_t width, uint32_t height, intptr_t stride) { /* N is the number of samples to process per md5 update. * All N samples must fit in buf */ uint32_t N = 32; uint32_t width_modN = width % N; uint32_t width_less_modN = width - width_modN; for (uint32_t y = 0; y < height; y++) { /* convert pel's into uint32_t chars in little endian byte order. * NB, for 8bit data, data is truncated to 8bits. */ for (uint32_t x = 0; x < width_less_modN; x += N) md5_block(md5, &plane[y * stride + x], N); /* mop up any of the remaining line */ md5_block(md5, &plane[y * stride + width_less_modN], width_modN); } } void updateCRC(const pixel* plane, uint32_t& crcVal, uint32_t height, uint32_t width, intptr_t stride) { uint32_t crcMsb; uint32_t bitVal; uint32_t bitIdx; for (uint32_t y = 0; y < height; y++) { for (uint32_t x = 0; x < width; x++) { // take CRC of first pictureData byte for (bitIdx = 0; bitIdx < 8; bitIdx++) { crcMsb = (crcVal >> 15) & 1; bitVal = (plane[y * stride + x] >> (7 - bitIdx)) & 1; crcVal = (((crcVal << 1) + bitVal) & 0xffff) ^ (crcMsb * 0x1021); } #if _MSC_VER #pragma warning(disable: 4127) // conditional expression is constant #endif // take CRC of second pictureData byte if bit depth is greater than 8-bits if (X265_DEPTH > 8) { for (bitIdx = 0; bitIdx < 8; bitIdx++) { crcMsb = (crcVal >> 15) & 1; bitVal = (plane[y * stride + x] >> (15 - bitIdx)) & 1; crcVal = (((crcVal << 1) + bitVal) & 0xffff) ^ (crcMsb * 0x1021); } } } } } void crcFinish(uint32_t& crcVal, uint8_t digest[16]) { uint32_t crcMsb; for (int bitIdx = 0; bitIdx < 16; bitIdx++) { crcMsb = (crcVal >> 15) & 1; crcVal = ((crcVal << 1) & 0xffff) ^ (crcMsb * 0x1021); } digest[0] = (crcVal >> 8) & 0xff; digest[1] = crcVal & 0xff; } void updateChecksum(const pixel* plane, uint32_t& checksumVal, uint32_t height, uint32_t width, intptr_t stride, int row, uint32_t cuHeight) { uint8_t xor_mask; for (uint32_t y = row * cuHeight; y < ((row * cuHeight) + height); y++) { for (uint32_t x = 0; x < width; x++) { xor_mask = (uint8_t)((x & 0xff) ^ (y & 0xff) ^ (x >> 8) ^ (y >> 8)); checksumVal = (checksumVal + ((plane[y * stride + x] & 0xff) ^ xor_mask)) & 0xffffffff; if (X265_DEPTH > 8) checksumVal = (checksumVal + ((plane[y * stride + x] >> 7 >> 1) ^ xor_mask)) & 0xffffffff; } } } void checksumFinish(uint32_t checksum, uint8_t digest[16]) { digest[0] = (checksum >> 24) & 0xff; digest[1] = (checksum >> 16) & 0xff; digest[2] = (checksum >> 8) & 0xff; digest[3] = checksum & 0xff; } void updateMD5Plane(MD5Context& md5, const pixel* plane, uint32_t width, uint32_t height, intptr_t stride) { /* choose an md5_plane packing function based on the system bitdepth */ typedef void(*MD5PlaneFunc)(MD5Context&, const pixel*, uint32_t, uint32_t, intptr_t); MD5PlaneFunc md5_plane_func; md5_plane_func = X265_DEPTH <= 8 ? (MD5PlaneFunc)md5_plane<1> : (MD5PlaneFunc)md5_plane<2>; md5_plane_func(md5, plane, width, height, stride); } }