// Copyright 2012 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build race package runtime import ( "internal/abi" "unsafe" ) // Public race detection API, present iff build with -race. func RaceRead(addr unsafe.Pointer) func RaceWrite(addr unsafe.Pointer) func RaceReadRange(addr unsafe.Pointer, len int) func RaceWriteRange(addr unsafe.Pointer, len int) func RaceErrors() int { var n uint64 racecall(&__tsan_report_count, uintptr(unsafe.Pointer(&n)), 0, 0, 0) return int(n) } //go:nosplit // RaceAcquire/RaceRelease/RaceReleaseMerge establish happens-before relations // between goroutines. These inform the race detector about actual synchronization // that it can't see for some reason (e.g. synchronization within RaceDisable/RaceEnable // sections of code). // RaceAcquire establishes a happens-before relation with the preceding // RaceReleaseMerge on addr up to and including the last RaceRelease on addr. // In terms of the C memory model (C11 §5.1.2.4, §7.17.3), // RaceAcquire is equivalent to atomic_load(memory_order_acquire). func RaceAcquire(addr unsafe.Pointer) { raceacquire(addr) } //go:nosplit // RaceRelease performs a release operation on addr that // can synchronize with a later RaceAcquire on addr. // // In terms of the C memory model, RaceRelease is equivalent to // atomic_store(memory_order_release). func RaceRelease(addr unsafe.Pointer) { racerelease(addr) } //go:nosplit // RaceReleaseMerge is like RaceRelease, but also establishes a happens-before // relation with the preceding RaceRelease or RaceReleaseMerge on addr. // // In terms of the C memory model, RaceReleaseMerge is equivalent to // atomic_exchange(memory_order_release). func RaceReleaseMerge(addr unsafe.Pointer) { racereleasemerge(addr) } //go:nosplit // RaceDisable disables handling of race synchronization events in the current goroutine. // Handling is re-enabled with RaceEnable. RaceDisable/RaceEnable can be nested. // Non-synchronization events (memory accesses, function entry/exit) still affect // the race detector. func RaceDisable() { _g_ := getg() if _g_.raceignore == 0 { racecall(&__tsan_go_ignore_sync_begin, _g_.racectx, 0, 0, 0) } _g_.raceignore++ } //go:nosplit // RaceEnable re-enables handling of race events in the current goroutine. func RaceEnable() { _g_ := getg() _g_.raceignore-- if _g_.raceignore == 0 { racecall(&__tsan_go_ignore_sync_end, _g_.racectx, 0, 0, 0) } } // Private interface for the runtime. const raceenabled = true // For all functions accepting callerpc and pc, // callerpc is a return PC of the function that calls this function, // pc is start PC of the function that calls this function. func raceReadObjectPC(t *_type, addr unsafe.Pointer, callerpc, pc uintptr) { kind := t.kind & kindMask if kind == kindArray || kind == kindStruct { // for composite objects we have to read every address // because a write might happen to any subobject. racereadrangepc(addr, t.size, callerpc, pc) } else { // for non-composite objects we can read just the start // address, as any write must write the first byte. racereadpc(addr, callerpc, pc) } } func raceWriteObjectPC(t *_type, addr unsafe.Pointer, callerpc, pc uintptr) { kind := t.kind & kindMask if kind == kindArray || kind == kindStruct { // for composite objects we have to write every address // because a write might happen to any subobject. racewriterangepc(addr, t.size, callerpc, pc) } else { // for non-composite objects we can write just the start // address, as any write must write the first byte. racewritepc(addr, callerpc, pc) } } //go:noescape func racereadpc(addr unsafe.Pointer, callpc, pc uintptr) //go:noescape func racewritepc(addr unsafe.Pointer, callpc, pc uintptr) type symbolizeCodeContext struct { pc uintptr fn *byte file *byte line uintptr off uintptr res uintptr } var qq = [...]byte{'?', '?', 0} var dash = [...]byte{'-', 0} const ( raceGetProcCmd = iota raceSymbolizeCodeCmd raceSymbolizeDataCmd ) // Callback from C into Go, runs on g0. func racecallback(cmd uintptr, ctx unsafe.Pointer) { switch cmd { case raceGetProcCmd: throw("should have been handled by racecallbackthunk") case raceSymbolizeCodeCmd: raceSymbolizeCode((*symbolizeCodeContext)(ctx)) case raceSymbolizeDataCmd: raceSymbolizeData((*symbolizeDataContext)(ctx)) default: throw("unknown command") } } // raceSymbolizeCode reads ctx.pc and populates the rest of *ctx with // information about the code at that pc. // // The race detector has already subtracted 1 from pcs, so they point to the last // byte of call instructions (including calls to runtime.racewrite and friends). // // If the incoming pc is part of an inlined function, *ctx is populated // with information about the inlined function, and on return ctx.pc is set // to a pc in the logically containing function. (The race detector should call this // function again with that pc.) // // If the incoming pc is not part of an inlined function, the return pc is unchanged. func raceSymbolizeCode(ctx *symbolizeCodeContext) { pc := ctx.pc fi := findfunc(pc) f := fi._Func() if f != nil { file, line := f.FileLine(pc) if line != 0 { if inldata := funcdata(fi, _FUNCDATA_InlTree); inldata != nil { inltree := (*[1 << 20]inlinedCall)(inldata) for { ix := pcdatavalue(fi, _PCDATA_InlTreeIndex, pc, nil) if ix >= 0 { if inltree[ix].funcID == funcID_wrapper { // ignore wrappers // Back up to an instruction in the "caller". pc = f.Entry() + uintptr(inltree[ix].parentPc) continue } ctx.pc = f.Entry() + uintptr(inltree[ix].parentPc) // "caller" pc ctx.fn = cfuncnameFromNameoff(fi, inltree[ix].func_) ctx.line = uintptr(line) ctx.file = &bytes(file)[0] // assume NUL-terminated ctx.off = pc - f.Entry() ctx.res = 1 return } break } } ctx.fn = cfuncname(fi) ctx.line = uintptr(line) ctx.file = &bytes(file)[0] // assume NUL-terminated ctx.off = pc - f.Entry() ctx.res = 1 return } } ctx.fn = &qq[0] ctx.file = &dash[0] ctx.line = 0 ctx.off = ctx.pc ctx.res = 1 } type symbolizeDataContext struct { addr uintptr heap uintptr start uintptr size uintptr name *byte file *byte line uintptr res uintptr } func raceSymbolizeData(ctx *symbolizeDataContext) { if base, span, _ := findObject(ctx.addr, 0, 0); base != 0 { ctx.heap = 1 ctx.start = base ctx.size = span.elemsize ctx.res = 1 } } // Race runtime functions called via runtime·racecall. // //go:linkname __tsan_init __tsan_init var __tsan_init byte //go:linkname __tsan_fini __tsan_fini var __tsan_fini byte //go:linkname __tsan_proc_create __tsan_proc_create var __tsan_proc_create byte //go:linkname __tsan_proc_destroy __tsan_proc_destroy var __tsan_proc_destroy byte //go:linkname __tsan_map_shadow __tsan_map_shadow var __tsan_map_shadow byte //go:linkname __tsan_finalizer_goroutine __tsan_finalizer_goroutine var __tsan_finalizer_goroutine byte //go:linkname __tsan_go_start __tsan_go_start var __tsan_go_start byte //go:linkname __tsan_go_end __tsan_go_end var __tsan_go_end byte //go:linkname __tsan_malloc __tsan_malloc var __tsan_malloc byte //go:linkname __tsan_free __tsan_free var __tsan_free byte //go:linkname __tsan_acquire __tsan_acquire var __tsan_acquire byte //go:linkname __tsan_release __tsan_release var __tsan_release byte //go:linkname __tsan_release_acquire __tsan_release_acquire var __tsan_release_acquire byte //go:linkname __tsan_release_merge __tsan_release_merge var __tsan_release_merge byte //go:linkname __tsan_go_ignore_sync_begin __tsan_go_ignore_sync_begin var __tsan_go_ignore_sync_begin byte //go:linkname __tsan_go_ignore_sync_end __tsan_go_ignore_sync_end var __tsan_go_ignore_sync_end byte //go:linkname __tsan_report_count __tsan_report_count var __tsan_report_count byte // Mimic what cmd/cgo would do. // //go:cgo_import_static __tsan_init //go:cgo_import_static __tsan_fini //go:cgo_import_static __tsan_proc_create //go:cgo_import_static __tsan_proc_destroy //go:cgo_import_static __tsan_map_shadow //go:cgo_import_static __tsan_finalizer_goroutine //go:cgo_import_static __tsan_go_start //go:cgo_import_static __tsan_go_end //go:cgo_import_static __tsan_malloc //go:cgo_import_static __tsan_free //go:cgo_import_static __tsan_acquire //go:cgo_import_static __tsan_release //go:cgo_import_static __tsan_release_acquire //go:cgo_import_static __tsan_release_merge //go:cgo_import_static __tsan_go_ignore_sync_begin //go:cgo_import_static __tsan_go_ignore_sync_end //go:cgo_import_static __tsan_report_count // These are called from race_amd64.s. // //go:cgo_import_static __tsan_read //go:cgo_import_static __tsan_read_pc //go:cgo_import_static __tsan_read_range //go:cgo_import_static __tsan_write //go:cgo_import_static __tsan_write_pc //go:cgo_import_static __tsan_write_range //go:cgo_import_static __tsan_func_enter //go:cgo_import_static __tsan_func_exit //go:cgo_import_static __tsan_go_atomic32_load //go:cgo_import_static __tsan_go_atomic64_load //go:cgo_import_static __tsan_go_atomic32_store //go:cgo_import_static __tsan_go_atomic64_store //go:cgo_import_static __tsan_go_atomic32_exchange //go:cgo_import_static __tsan_go_atomic64_exchange //go:cgo_import_static __tsan_go_atomic32_fetch_add //go:cgo_import_static __tsan_go_atomic64_fetch_add //go:cgo_import_static __tsan_go_atomic32_compare_exchange //go:cgo_import_static __tsan_go_atomic64_compare_exchange // start/end of global data (data+bss). var racedatastart uintptr var racedataend uintptr // start/end of heap for race_amd64.s var racearenastart uintptr var racearenaend uintptr func racefuncenter(callpc uintptr) func racefuncenterfp(fp uintptr) func racefuncexit() func raceread(addr uintptr) func racewrite(addr uintptr) func racereadrange(addr, size uintptr) func racewriterange(addr, size uintptr) func racereadrangepc1(addr, size, pc uintptr) func racewriterangepc1(addr, size, pc uintptr) func racecallbackthunk(uintptr) // racecall allows calling an arbitrary function fn from C race runtime // with up to 4 uintptr arguments. func racecall(fn *byte, arg0, arg1, arg2, arg3 uintptr) // checks if the address has shadow (i.e. heap or data/bss) // //go:nosplit func isvalidaddr(addr unsafe.Pointer) bool { return racearenastart <= uintptr(addr) && uintptr(addr) < racearenaend || racedatastart <= uintptr(addr) && uintptr(addr) < racedataend } //go:nosplit func raceinit() (gctx, pctx uintptr) { // cgo is required to initialize libc, which is used by race runtime if !iscgo { throw("raceinit: race build must use cgo") } racecall(&__tsan_init, uintptr(unsafe.Pointer(&gctx)), uintptr(unsafe.Pointer(&pctx)), abi.FuncPCABI0(racecallbackthunk), 0) // Round data segment to page boundaries, because it's used in mmap(). start := ^uintptr(0) end := uintptr(0) if start > firstmoduledata.noptrdata { start = firstmoduledata.noptrdata } if start > firstmoduledata.data { start = firstmoduledata.data } if start > firstmoduledata.noptrbss { start = firstmoduledata.noptrbss } if start > firstmoduledata.bss { start = firstmoduledata.bss } if end < firstmoduledata.enoptrdata { end = firstmoduledata.enoptrdata } if end < firstmoduledata.edata { end = firstmoduledata.edata } if end < firstmoduledata.enoptrbss { end = firstmoduledata.enoptrbss } if end < firstmoduledata.ebss { end = firstmoduledata.ebss } size := alignUp(end-start, _PageSize) racecall(&__tsan_map_shadow, start, size, 0, 0) racedatastart = start racedataend = start + size return } var raceFiniLock mutex //go:nosplit func racefini() { // racefini() can only be called once to avoid races. // This eventually (via __tsan_fini) calls C.exit which has // undefined behavior if called more than once. If the lock is // already held it's assumed that the first caller exits the program // so other calls can hang forever without an issue. lock(&raceFiniLock) // We're entering external code that may call ExitProcess on // Windows. osPreemptExtEnter(getg().m) racecall(&__tsan_fini, 0, 0, 0, 0) } //go:nosplit func raceproccreate() uintptr { var ctx uintptr racecall(&__tsan_proc_create, uintptr(unsafe.Pointer(&ctx)), 0, 0, 0) return ctx } //go:nosplit func raceprocdestroy(ctx uintptr) { racecall(&__tsan_proc_destroy, ctx, 0, 0, 0) } //go:nosplit func racemapshadow(addr unsafe.Pointer, size uintptr) { if racearenastart == 0 { racearenastart = uintptr(addr) } if racearenaend < uintptr(addr)+size { racearenaend = uintptr(addr) + size } racecall(&__tsan_map_shadow, uintptr(addr), size, 0, 0) } //go:nosplit func racemalloc(p unsafe.Pointer, sz uintptr) { racecall(&__tsan_malloc, 0, 0, uintptr(p), sz) } //go:nosplit func racefree(p unsafe.Pointer, sz uintptr) { racecall(&__tsan_free, uintptr(p), sz, 0, 0) } //go:nosplit func racegostart(pc uintptr) uintptr { _g_ := getg() var spawng *g if _g_.m.curg != nil { spawng = _g_.m.curg } else { spawng = _g_ } var racectx uintptr racecall(&__tsan_go_start, spawng.racectx, uintptr(unsafe.Pointer(&racectx)), pc, 0) return racectx } //go:nosplit func racegoend() { racecall(&__tsan_go_end, getg().racectx, 0, 0, 0) } //go:nosplit func racectxend(racectx uintptr) { racecall(&__tsan_go_end, racectx, 0, 0, 0) } //go:nosplit func racewriterangepc(addr unsafe.Pointer, sz, callpc, pc uintptr) { _g_ := getg() if _g_ != _g_.m.curg { // The call is coming from manual instrumentation of Go code running on g0/gsignal. // Not interesting. return } if callpc != 0 { racefuncenter(callpc) } racewriterangepc1(uintptr(addr), sz, pc) if callpc != 0 { racefuncexit() } } //go:nosplit func racereadrangepc(addr unsafe.Pointer, sz, callpc, pc uintptr) { _g_ := getg() if _g_ != _g_.m.curg { // The call is coming from manual instrumentation of Go code running on g0/gsignal. // Not interesting. return } if callpc != 0 { racefuncenter(callpc) } racereadrangepc1(uintptr(addr), sz, pc) if callpc != 0 { racefuncexit() } } //go:nosplit func raceacquire(addr unsafe.Pointer) { raceacquireg(getg(), addr) } //go:nosplit func raceacquireg(gp *g, addr unsafe.Pointer) { if getg().raceignore != 0 || !isvalidaddr(addr) { return } racecall(&__tsan_acquire, gp.racectx, uintptr(addr), 0, 0) } //go:nosplit func raceacquirectx(racectx uintptr, addr unsafe.Pointer) { if !isvalidaddr(addr) { return } racecall(&__tsan_acquire, racectx, uintptr(addr), 0, 0) } //go:nosplit func racerelease(addr unsafe.Pointer) { racereleaseg(getg(), addr) } //go:nosplit func racereleaseg(gp *g, addr unsafe.Pointer) { if getg().raceignore != 0 || !isvalidaddr(addr) { return } racecall(&__tsan_release, gp.racectx, uintptr(addr), 0, 0) } //go:nosplit func racereleaseacquire(addr unsafe.Pointer) { racereleaseacquireg(getg(), addr) } //go:nosplit func racereleaseacquireg(gp *g, addr unsafe.Pointer) { if getg().raceignore != 0 || !isvalidaddr(addr) { return } racecall(&__tsan_release_acquire, gp.racectx, uintptr(addr), 0, 0) } //go:nosplit func racereleasemerge(addr unsafe.Pointer) { racereleasemergeg(getg(), addr) } //go:nosplit func racereleasemergeg(gp *g, addr unsafe.Pointer) { if getg().raceignore != 0 || !isvalidaddr(addr) { return } racecall(&__tsan_release_merge, gp.racectx, uintptr(addr), 0, 0) } //go:nosplit func racefingo() { racecall(&__tsan_finalizer_goroutine, getg().racectx, 0, 0, 0) } // The declarations below generate ABI wrappers for functions // implemented in assembly in this package but declared in another // package. //go:linkname abigen_sync_atomic_LoadInt32 sync/atomic.LoadInt32 func abigen_sync_atomic_LoadInt32(addr *int32) (val int32) //go:linkname abigen_sync_atomic_LoadInt64 sync/atomic.LoadInt64 func abigen_sync_atomic_LoadInt64(addr *int64) (val int64) //go:linkname abigen_sync_atomic_LoadUint32 sync/atomic.LoadUint32 func abigen_sync_atomic_LoadUint32(addr *uint32) (val uint32) //go:linkname abigen_sync_atomic_LoadUint64 sync/atomic.LoadUint64 func abigen_sync_atomic_LoadUint64(addr *uint64) (val uint64) //go:linkname abigen_sync_atomic_LoadUintptr sync/atomic.LoadUintptr func abigen_sync_atomic_LoadUintptr(addr *uintptr) (val uintptr) //go:linkname abigen_sync_atomic_LoadPointer sync/atomic.LoadPointer func abigen_sync_atomic_LoadPointer(addr *unsafe.Pointer) (val unsafe.Pointer) //go:linkname abigen_sync_atomic_StoreInt32 sync/atomic.StoreInt32 func abigen_sync_atomic_StoreInt32(addr *int32, val int32) //go:linkname abigen_sync_atomic_StoreInt64 sync/atomic.StoreInt64 func abigen_sync_atomic_StoreInt64(addr *int64, val int64) //go:linkname abigen_sync_atomic_StoreUint32 sync/atomic.StoreUint32 func abigen_sync_atomic_StoreUint32(addr *uint32, val uint32) //go:linkname abigen_sync_atomic_StoreUint64 sync/atomic.StoreUint64 func abigen_sync_atomic_StoreUint64(addr *uint64, val uint64) //go:linkname abigen_sync_atomic_SwapInt32 sync/atomic.SwapInt32 func abigen_sync_atomic_SwapInt32(addr *int32, new int32) (old int32) //go:linkname abigen_sync_atomic_SwapInt64 sync/atomic.SwapInt64 func abigen_sync_atomic_SwapInt64(addr *int64, new int64) (old int64) //go:linkname abigen_sync_atomic_SwapUint32 sync/atomic.SwapUint32 func abigen_sync_atomic_SwapUint32(addr *uint32, new uint32) (old uint32) //go:linkname abigen_sync_atomic_SwapUint64 sync/atomic.SwapUint64 func abigen_sync_atomic_SwapUint64(addr *uint64, new uint64) (old uint64) //go:linkname abigen_sync_atomic_AddInt32 sync/atomic.AddInt32 func abigen_sync_atomic_AddInt32(addr *int32, delta int32) (new int32) //go:linkname abigen_sync_atomic_AddUint32 sync/atomic.AddUint32 func abigen_sync_atomic_AddUint32(addr *uint32, delta uint32) (new uint32) //go:linkname abigen_sync_atomic_AddInt64 sync/atomic.AddInt64 func abigen_sync_atomic_AddInt64(addr *int64, delta int64) (new int64) //go:linkname abigen_sync_atomic_AddUint64 sync/atomic.AddUint64 func abigen_sync_atomic_AddUint64(addr *uint64, delta uint64) (new uint64) //go:linkname abigen_sync_atomic_AddUintptr sync/atomic.AddUintptr func abigen_sync_atomic_AddUintptr(addr *uintptr, delta uintptr) (new uintptr) //go:linkname abigen_sync_atomic_CompareAndSwapInt32 sync/atomic.CompareAndSwapInt32 func abigen_sync_atomic_CompareAndSwapInt32(addr *int32, old, new int32) (swapped bool) //go:linkname abigen_sync_atomic_CompareAndSwapInt64 sync/atomic.CompareAndSwapInt64 func abigen_sync_atomic_CompareAndSwapInt64(addr *int64, old, new int64) (swapped bool) //go:linkname abigen_sync_atomic_CompareAndSwapUint32 sync/atomic.CompareAndSwapUint32 func abigen_sync_atomic_CompareAndSwapUint32(addr *uint32, old, new uint32) (swapped bool) //go:linkname abigen_sync_atomic_CompareAndSwapUint64 sync/atomic.CompareAndSwapUint64 func abigen_sync_atomic_CompareAndSwapUint64(addr *uint64, old, new uint64) (swapped bool)