// Copyright 2013 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:build race #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" #include "cgo/abi_amd64.h" // The following thunks allow calling the gcc-compiled race runtime directly // from Go code without going all the way through cgo. // First, it's much faster (up to 50% speedup for real Go programs). // Second, it eliminates race-related special cases from cgocall and scheduler. // Third, in long-term it will allow to remove cyclic runtime/race dependency on cmd/go. // A brief recap of the amd64 calling convention. // Arguments are passed in DI, SI, DX, CX, R8, R9, the rest is on stack. // Callee-saved registers are: BX, BP, R12-R15. // SP must be 16-byte aligned. // On Windows: // Arguments are passed in CX, DX, R8, R9, the rest is on stack. // Callee-saved registers are: BX, BP, DI, SI, R12-R15. // SP must be 16-byte aligned. Windows also requires "stack-backing" for the 4 register arguments: // https://msdn.microsoft.com/en-us/library/ms235286.aspx // We do not do this, because it seems to be intended for vararg/unprototyped functions. // Gcc-compiled race runtime does not try to use that space. #ifdef GOOS_windows #define RARG0 CX #define RARG1 DX #define RARG2 R8 #define RARG3 R9 #else #define RARG0 DI #define RARG1 SI #define RARG2 DX #define RARG3 CX #endif // func runtime·raceread(addr uintptr) // Called from instrumented code. // Defined as ABIInternal so as to avoid introducing a wrapper, // which would render runtime.getcallerpc ineffective. TEXT runtime·raceread(SB), NOSPLIT, $0-8 MOVQ AX, RARG1 MOVQ (SP), RARG2 // void __tsan_read(ThreadState *thr, void *addr, void *pc); MOVQ $__tsan_read(SB), AX JMP racecalladdr<>(SB) // func runtime·RaceRead(addr uintptr) TEXT runtime·RaceRead(SB), NOSPLIT, $0-8 // This needs to be a tail call, because raceread reads caller pc. JMP runtime·raceread(SB) // void runtime·racereadpc(void *addr, void *callpc, void *pc) TEXT runtime·racereadpc(SB), NOSPLIT, $0-24 MOVQ addr+0(FP), RARG1 MOVQ callpc+8(FP), RARG2 MOVQ pc+16(FP), RARG3 ADDQ $1, RARG3 // pc is function start, tsan wants return address // void __tsan_read_pc(ThreadState *thr, void *addr, void *callpc, void *pc); MOVQ $__tsan_read_pc(SB), AX JMP racecalladdr<>(SB) // func runtime·racewrite(addr uintptr) // Called from instrumented code. // Defined as ABIInternal so as to avoid introducing a wrapper, // which would render runtime.getcallerpc ineffective. TEXT runtime·racewrite(SB), NOSPLIT, $0-8 MOVQ AX, RARG1 MOVQ (SP), RARG2 // void __tsan_write(ThreadState *thr, void *addr, void *pc); MOVQ $__tsan_write(SB), AX JMP racecalladdr<>(SB) // func runtime·RaceWrite(addr uintptr) TEXT runtime·RaceWrite(SB), NOSPLIT, $0-8 // This needs to be a tail call, because racewrite reads caller pc. JMP runtime·racewrite(SB) // void runtime·racewritepc(void *addr, void *callpc, void *pc) TEXT runtime·racewritepc(SB), NOSPLIT, $0-24 MOVQ addr+0(FP), RARG1 MOVQ callpc+8(FP), RARG2 MOVQ pc+16(FP), RARG3 ADDQ $1, RARG3 // pc is function start, tsan wants return address // void __tsan_write_pc(ThreadState *thr, void *addr, void *callpc, void *pc); MOVQ $__tsan_write_pc(SB), AX JMP racecalladdr<>(SB) // func runtime·racereadrange(addr, size uintptr) // Called from instrumented code. // Defined as ABIInternal so as to avoid introducing a wrapper, // which would render runtime.getcallerpc ineffective. TEXT runtime·racereadrange(SB), NOSPLIT, $0-16 MOVQ AX, RARG1 MOVQ BX, RARG2 MOVQ (SP), RARG3 // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVQ $__tsan_read_range(SB), AX JMP racecalladdr<>(SB) // func runtime·RaceReadRange(addr, size uintptr) TEXT runtime·RaceReadRange(SB), NOSPLIT, $0-16 // This needs to be a tail call, because racereadrange reads caller pc. JMP runtime·racereadrange(SB) // void runtime·racereadrangepc1(void *addr, uintptr sz, void *pc) TEXT runtime·racereadrangepc1(SB), NOSPLIT, $0-24 MOVQ addr+0(FP), RARG1 MOVQ size+8(FP), RARG2 MOVQ pc+16(FP), RARG3 ADDQ $1, RARG3 // pc is function start, tsan wants return address // void __tsan_read_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVQ $__tsan_read_range(SB), AX JMP racecalladdr<>(SB) // func runtime·racewriterange(addr, size uintptr) // Called from instrumented code. // Defined as ABIInternal so as to avoid introducing a wrapper, // which would render runtime.getcallerpc ineffective. TEXT runtime·racewriterange(SB), NOSPLIT, $0-16 MOVQ AX, RARG1 MOVQ BX, RARG2 MOVQ (SP), RARG3 // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVQ $__tsan_write_range(SB), AX JMP racecalladdr<>(SB) // func runtime·RaceWriteRange(addr, size uintptr) TEXT runtime·RaceWriteRange(SB), NOSPLIT, $0-16 // This needs to be a tail call, because racewriterange reads caller pc. JMP runtime·racewriterange(SB) // void runtime·racewriterangepc1(void *addr, uintptr sz, void *pc) TEXT runtime·racewriterangepc1(SB), NOSPLIT, $0-24 MOVQ addr+0(FP), RARG1 MOVQ size+8(FP), RARG2 MOVQ pc+16(FP), RARG3 ADDQ $1, RARG3 // pc is function start, tsan wants return address // void __tsan_write_range(ThreadState *thr, void *addr, uintptr size, void *pc); MOVQ $__tsan_write_range(SB), AX JMP racecalladdr<>(SB) // If addr (RARG1) is out of range, do nothing. // Otherwise, setup goroutine context and invoke racecall. Other arguments already set. TEXT racecalladdr<>(SB), NOSPLIT, $0-0 MOVQ g_racectx(R14), RARG0 // goroutine context // Check that addr is within [arenastart, arenaend) or within [racedatastart, racedataend). CMPQ RARG1, runtime·racearenastart(SB) JB data CMPQ RARG1, runtime·racearenaend(SB) JB call data: CMPQ RARG1, runtime·racedatastart(SB) JB ret CMPQ RARG1, runtime·racedataend(SB) JAE ret call: MOVQ AX, AX // w/o this 6a miscompiles this function JMP racecall<>(SB) ret: RET // func runtime·racefuncenter(pc uintptr) // Called from instrumented code. TEXT runtime·racefuncenter(SB), NOSPLIT, $0-8 MOVQ callpc+0(FP), R11 JMP racefuncenter<>(SB) // Common code for racefuncenter // R11 = caller's return address TEXT racefuncenter<>(SB), NOSPLIT, $0-0 MOVQ DX, BX // save function entry context (for closures) MOVQ g_racectx(R14), RARG0 // goroutine context MOVQ R11, RARG1 // void __tsan_func_enter(ThreadState *thr, void *pc); MOVQ $__tsan_func_enter(SB), AX // racecall<> preserves BX CALL racecall<>(SB) MOVQ BX, DX // restore function entry context RET // func runtime·racefuncexit() // Called from instrumented code. TEXT runtime·racefuncexit(SB), NOSPLIT, $0-0 MOVQ g_racectx(R14), RARG0 // goroutine context // void __tsan_func_exit(ThreadState *thr); MOVQ $__tsan_func_exit(SB), AX JMP racecall<>(SB) // Atomic operations for sync/atomic package. // Load TEXT sync∕atomic·LoadInt32(SB), NOSPLIT, $0-12 GO_ARGS MOVQ $__tsan_go_atomic32_load(SB), AX CALL racecallatomic<>(SB) RET TEXT sync∕atomic·LoadInt64(SB), NOSPLIT, $0-16 GO_ARGS MOVQ $__tsan_go_atomic64_load(SB), AX CALL racecallatomic<>(SB) RET TEXT sync∕atomic·LoadUint32(SB), NOSPLIT, $0-12 GO_ARGS JMP sync∕atomic·LoadInt32(SB) TEXT sync∕atomic·LoadUint64(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·LoadInt64(SB) TEXT sync∕atomic·LoadUintptr(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·LoadInt64(SB) TEXT sync∕atomic·LoadPointer(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·LoadInt64(SB) // Store TEXT sync∕atomic·StoreInt32(SB), NOSPLIT, $0-12 GO_ARGS MOVQ $__tsan_go_atomic32_store(SB), AX CALL racecallatomic<>(SB) RET TEXT sync∕atomic·StoreInt64(SB), NOSPLIT, $0-16 GO_ARGS MOVQ $__tsan_go_atomic64_store(SB), AX CALL racecallatomic<>(SB) RET TEXT sync∕atomic·StoreUint32(SB), NOSPLIT, $0-12 GO_ARGS JMP sync∕atomic·StoreInt32(SB) TEXT sync∕atomic·StoreUint64(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·StoreInt64(SB) TEXT sync∕atomic·StoreUintptr(SB), NOSPLIT, $0-16 GO_ARGS JMP sync∕atomic·StoreInt64(SB) // Swap TEXT sync∕atomic·SwapInt32(SB), NOSPLIT, $0-20 GO_ARGS MOVQ $__tsan_go_atomic32_exchange(SB), AX CALL racecallatomic<>(SB) RET TEXT sync∕atomic·SwapInt64(SB), NOSPLIT, $0-24 GO_ARGS MOVQ $__tsan_go_atomic64_exchange(SB), AX CALL racecallatomic<>(SB) RET TEXT sync∕atomic·SwapUint32(SB), NOSPLIT, $0-20 GO_ARGS JMP sync∕atomic·SwapInt32(SB) TEXT sync∕atomic·SwapUint64(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·SwapInt64(SB) TEXT sync∕atomic·SwapUintptr(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·SwapInt64(SB) // Add TEXT sync∕atomic·AddInt32(SB), NOSPLIT, $0-20 GO_ARGS MOVQ $__tsan_go_atomic32_fetch_add(SB), AX CALL racecallatomic<>(SB) MOVL add+8(FP), AX // convert fetch_add to add_fetch ADDL AX, ret+16(FP) RET TEXT sync∕atomic·AddInt64(SB), NOSPLIT, $0-24 GO_ARGS MOVQ $__tsan_go_atomic64_fetch_add(SB), AX CALL racecallatomic<>(SB) MOVQ add+8(FP), AX // convert fetch_add to add_fetch ADDQ AX, ret+16(FP) RET TEXT sync∕atomic·AddUint32(SB), NOSPLIT, $0-20 GO_ARGS JMP sync∕atomic·AddInt32(SB) TEXT sync∕atomic·AddUint64(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·AddInt64(SB) TEXT sync∕atomic·AddUintptr(SB), NOSPLIT, $0-24 GO_ARGS JMP sync∕atomic·AddInt64(SB) // CompareAndSwap TEXT sync∕atomic·CompareAndSwapInt32(SB), NOSPLIT, $0-17 GO_ARGS MOVQ $__tsan_go_atomic32_compare_exchange(SB), AX CALL racecallatomic<>(SB) RET TEXT sync∕atomic·CompareAndSwapInt64(SB), NOSPLIT, $0-25 GO_ARGS MOVQ $__tsan_go_atomic64_compare_exchange(SB), AX CALL racecallatomic<>(SB) RET TEXT sync∕atomic·CompareAndSwapUint32(SB), NOSPLIT, $0-17 GO_ARGS JMP sync∕atomic·CompareAndSwapInt32(SB) TEXT sync∕atomic·CompareAndSwapUint64(SB), NOSPLIT, $0-25 GO_ARGS JMP sync∕atomic·CompareAndSwapInt64(SB) TEXT sync∕atomic·CompareAndSwapUintptr(SB), NOSPLIT, $0-25 GO_ARGS JMP sync∕atomic·CompareAndSwapInt64(SB) // Generic atomic operation implementation. // AX already contains target function. TEXT racecallatomic<>(SB), NOSPLIT, $0-0 // Trigger SIGSEGV early. MOVQ 16(SP), R12 MOVL (R12), R13 // Check that addr is within [arenastart, arenaend) or within [racedatastart, racedataend). CMPQ R12, runtime·racearenastart(SB) JB racecallatomic_data CMPQ R12, runtime·racearenaend(SB) JB racecallatomic_ok racecallatomic_data: CMPQ R12, runtime·racedatastart(SB) JB racecallatomic_ignore CMPQ R12, runtime·racedataend(SB) JAE racecallatomic_ignore racecallatomic_ok: // Addr is within the good range, call the atomic function. MOVQ g_racectx(R14), RARG0 // goroutine context MOVQ 8(SP), RARG1 // caller pc MOVQ (SP), RARG2 // pc LEAQ 16(SP), RARG3 // arguments JMP racecall<>(SB) // does not return racecallatomic_ignore: // Addr is outside the good range. // Call __tsan_go_ignore_sync_begin to ignore synchronization during the atomic op. // An attempt to synchronize on the address would cause crash. MOVQ AX, BX // remember the original function MOVQ $__tsan_go_ignore_sync_begin(SB), AX MOVQ g_racectx(R14), RARG0 // goroutine context CALL racecall<>(SB) MOVQ BX, AX // restore the original function // Call the atomic function. MOVQ g_racectx(R14), RARG0 // goroutine context MOVQ 8(SP), RARG1 // caller pc MOVQ (SP), RARG2 // pc LEAQ 16(SP), RARG3 // arguments CALL racecall<>(SB) // Call __tsan_go_ignore_sync_end. MOVQ $__tsan_go_ignore_sync_end(SB), AX MOVQ g_racectx(R14), RARG0 // goroutine context JMP racecall<>(SB) // void runtime·racecall(void(*f)(...), ...) // Calls C function f from race runtime and passes up to 4 arguments to it. // The arguments are never heap-object-preserving pointers, so we pretend there are no arguments. TEXT runtime·racecall(SB), NOSPLIT, $0-0 MOVQ fn+0(FP), AX MOVQ arg0+8(FP), RARG0 MOVQ arg1+16(FP), RARG1 MOVQ arg2+24(FP), RARG2 MOVQ arg3+32(FP), RARG3 JMP racecall<>(SB) // Switches SP to g0 stack and calls (AX). Arguments already set. TEXT racecall<>(SB), NOSPLIT, $0-0 MOVQ g_m(R14), R13 // Switch to g0 stack. MOVQ SP, R12 // callee-saved, preserved across the CALL MOVQ m_g0(R13), R10 CMPQ R10, R14 JE call // already on g0 MOVQ (g_sched+gobuf_sp)(R10), SP call: ANDQ $~15, SP // alignment for gcc ABI CALL AX MOVQ R12, SP // Back to Go world, set special registers. // The g register (R14) is preserved in C. XORPS X15, X15 RET // C->Go callback thunk that allows to call runtime·racesymbolize from C code. // Direct Go->C race call has only switched SP, finish g->g0 switch by setting correct g. // The overall effect of Go->C->Go call chain is similar to that of mcall. // RARG0 contains command code. RARG1 contains command-specific context. // See racecallback for command codes. TEXT runtime·racecallbackthunk(SB), NOSPLIT, $0-0 // Handle command raceGetProcCmd (0) here. // First, code below assumes that we are on curg, while raceGetProcCmd // can be executed on g0. Second, it is called frequently, so will // benefit from this fast path. CMPQ RARG0, $0 JNE rest get_tls(RARG0) MOVQ g(RARG0), RARG0 MOVQ g_m(RARG0), RARG0 MOVQ m_p(RARG0), RARG0 MOVQ p_raceprocctx(RARG0), RARG0 MOVQ RARG0, (RARG1) RET rest: // Transition from C ABI to Go ABI. PUSH_REGS_HOST_TO_ABI0() // Set g = g0. get_tls(R12) MOVQ g(R12), R14 MOVQ g_m(R14), R13 MOVQ m_g0(R13), R15 CMPQ R13, R15 JEQ noswitch // branch if already on g0 MOVQ R15, g(R12) // g = m->g0 MOVQ R15, R14 // set g register PUSHQ RARG1 // func arg PUSHQ RARG0 // func arg CALL runtime·racecallback(SB) POPQ R12 POPQ R12 // All registers are smashed after Go code, reload. get_tls(R12) MOVQ g(R12), R13 MOVQ g_m(R13), R13 MOVQ m_curg(R13), R14 MOVQ R14, g(R12) // g = m->curg ret: POP_REGS_HOST_TO_ABI0() RET noswitch: // already on g0 PUSHQ RARG1 // func arg PUSHQ RARG0 // func arg CALL runtime·racecallback(SB) POPQ R12 POPQ R12 JMP ret