/************************************************************************* * Copyright (c) 2011 AT&T Intellectual Property * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * https://www.eclipse.org/legal/epl-v10.html * * Contributors: Details at https://graphviz.org *************************************************************************/ #include #include #include double xmin, xmax, ymin, ymax; /* min and max x and y values of sites */ double deltax; // xmax - xmin size_t nsites; int sqrt_nsites; void geominit(void) { double sn; sn = nsites + 4; sqrt_nsites = (int) sqrt(sn); } double dist_2(Point pp, Point qp) { const double dx = pp.x - qp.x; const double dy = pp.y - qp.y; return (dx * dx + dy * dy); } void subpt(Point * a, Point b, Point c) { a->x = b.x - c.x; a->y = b.y - c.y; } void addpt(Point * c, Point a, Point b) { c->x = a.x + b.x; c->y = a.y + b.y; } double area_2(Point a, Point b, Point c) { return ((a.y - b.y) * (c.x - b.x) - (c.y - b.y) * (a.x - b.x)); } int leftOf(Point a, Point b, Point c) { return (area_2(a, b, c) > 0); } int intersection(Point a, Point b, Point c, Point d, Point * p) { double s, t; /* The two parameters of the parametric eqns. */ double denom; /* Denominator of solutions. */ denom = a.x * (d.y - c.y) + b.x * (c.y - d.y) + d.x * (b.y - a.y) + c.x * (a.y - b.y); /* If denom is zero, then the line segments are parallel. */ /* In this case, return false even though the segments might overlap. */ if (denom == 0.0) return 0; s = (a.x * (d.y - c.y) + c.x * (a.y - d.y) + d.x * (c.y - a.y) ) / denom; t = -(a.x * (c.y - b.y) + b.x * (a.y - c.y) + c.x * (b.y - a.y) ) / denom; p->x = a.x + s * (b.x - a.x); p->y = a.y + s * (b.y - a.y); if ((0.0 <= s) && (s <= 1.0) && (0.0 <= t) && (t <= 1.0)) return 1; else return 0; }