/* Random kit 1.3 */ /* * Copyright (c) 2003-2005, Jean-Sebastien Roy (js@jeannot.org) * * The rk_random and rk_seed functions algorithms and the original design of * the Mersenne Twister RNG: * * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * 3. The names of its contributors may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Original algorithm for the implementation of rk_interval function from * Richard J. Wagner's implementation of the Mersenne Twister RNG, optimised by * Magnus Jonsson. * * Constants used in the rk_double implementation by Isaku Wada. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include void rk_seed(unsigned long seed, rk_state *state) { int pos; seed &= 0xffffffffUL; /* Knuth's PRNG as used in the Mersenne Twister reference implementation */ for (pos = 0; pos < RK_STATE_LEN; pos++) { state->key[pos] = seed; seed = (1812433253UL * (seed ^ (seed >> 30)) + pos + 1) & 0xffffffffUL; } state->pos = RK_STATE_LEN; } /* Magic Mersenne Twister constants */ #define N 624 #define M 397 #define MATRIX_A 0x9908b0dfUL #define UPPER_MASK 0x80000000UL #define LOWER_MASK 0x7fffffffUL /* Slightly optimised reference implementation of the Mersenne Twister */ unsigned long rk_random(rk_state *state) { unsigned long y; if (state->pos == RK_STATE_LEN) { int i; for (i = 0; i < N - M; i++) { y = (state->key[i] & UPPER_MASK) | (state->key[i+1] & LOWER_MASK); state->key[i] = state->key[i+M] ^ (y>>1) ^ (-(y & 1) & MATRIX_A); } for (; i < N - 1; i++) { y = (state->key[i] & UPPER_MASK) | (state->key[i+1] & LOWER_MASK); state->key[i] = state->key[i+(M-N)] ^ (y>>1) ^ (-(y & 1) & MATRIX_A); } y = (state->key[N - 1] & UPPER_MASK) | (state->key[0] & LOWER_MASK); state->key[N - 1] = state->key[M - 1] ^ (y >> 1) ^ (-(y & 1) & MATRIX_A); state->pos = 0; } y = state->key[state->pos++]; /* Tempering */ y ^= (y >> 11); y ^= (y << 7) & 0x9d2c5680UL; y ^= (y << 15) & 0xefc60000UL; y ^= (y >> 18); return y; } /// returns a random unsigned long between 0 and `ULONG_MAX` inclusive static unsigned long rk_ulong(rk_state *state) { #if ULONG_MAX <= 0xffffffffUL return rk_random(state); #else return (rk_random(state) << 32) | (rk_random(state)); #endif } unsigned long rk_interval(unsigned long max, rk_state *state) { unsigned long mask = max, value; if (max == 0) { return 0; } /* Smallest bit mask >= max */ mask |= mask >> 1; mask |= mask >> 2; mask |= mask >> 4; mask |= mask >> 8; mask |= mask >> 16; #if ULONG_MAX > 0xffffffffUL mask |= mask >> 32; #endif /* Search a random value in [0..mask] <= max */ #if ULONG_MAX > 0xffffffffUL if (max <= 0xffffffffUL) { while ((value = (rk_random(state) & mask)) > max); } else { while ((value = (rk_ulong(state) & mask)) > max); } #else while ((value = (rk_ulong(state) & mask)) > max); #endif return value; }