/** * @file * @brief trapezoidation * * See [Fast polygon triangulation based on Seidel's algorithm](http://gamma.cs.unc.edu/SEIDEL/) * */ /************************************************************************* * Copyright (c) 2011 AT&T Intellectual Property * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * https://www.eclipse.org/legal/epl-v10.html * * Contributors: Details at https://graphviz.org *************************************************************************/ #include "config.h" #include #include #include #include #include #include #include #include #include /* Node types */ #define T_X 1 #define T_Y 2 #define T_SINK 3 #define FIRSTPT 1 /* checking whether pt. is inserted */ #define LASTPT 2 #define S_LEFT 1 /* for merge-direction */ #define S_RIGHT 2 #define INF 1<<30 #define CROSS(v0, v1, v2) (((v1).x - (v0).x)*((v2).y - (v0).y) - \ ((v1).y - (v0).y)*((v2).x - (v0).x)) typedef struct { int nodetype; /* Y-node or S-node */ int segnum; pointf yval; int trnum; int parent; /* doubly linked DAG */ int left, right; /* children */ } qnode_t; /// an array of qnodes typedef struct { size_t length; qnode_t *data; } qnodes_t; /* Return a new node to be added into the query tree */ static int newnode(qnodes_t *qs) { qs->data = gv_recalloc(qs->data, qs->length, qs->length + 1, sizeof(qnode_t)); ++qs->length; return qs->length - 1; } /* Return a free trapezoid */ static int newtrap(traps_t *tr) { tr->data = gv_recalloc(tr->data, tr->length, tr->length + 1, sizeof(trap_t)); ++tr->length; return tr->length - 1; } /* Return the maximum of the two points into the yval structure */ static void _max (pointf *yval, pointf *v0, pointf *v1) { if (v0->y > v1->y + C_EPS) *yval = *v0; else if (FP_EQUAL(v0->y, v1->y)) { if (v0->x > v1->x + C_EPS) *yval = *v0; else *yval = *v1; } else *yval = *v1; } /* Return the minimum of the two points into the yval structure */ static void _min (pointf *yval, pointf *v0, pointf *v1) { if (v0->y < v1->y - C_EPS) *yval = *v0; else if (FP_EQUAL(v0->y, v1->y)) { if (v0->x < v1->x) *yval = *v0; else *yval = *v1; } else *yval = *v1; } static bool _greater_than_equal_to (pointf *v0, pointf *v1) { if (v0->y > v1->y + C_EPS) return true; else if (v0->y < v1->y - C_EPS) return false; else return v0->x >= v1->x; } static bool _less_than (pointf *v0, pointf *v1) { return !_greater_than_equal_to(v0, v1); } /* Initialize the query structure (Q) and the trapezoid table (T) * when the first segment is added to start the trapezoidation. The * query-tree starts out with 4 trapezoids, one S-node and 2 Y-nodes * * 4 * ----------------------------------- * \ * 1 \ 2 * \ * ----------------------------------- * 3 */ static int init_query_structure(int segnum, segment_t *seg, traps_t *tr, qnodes_t *qs) { int i1, root; int t1, t2, t3, t4; segment_t *s = &seg[segnum]; i1 = newnode(qs); qs->data[i1].nodetype = T_Y; _max(&qs->data[i1].yval, &s->v0, &s->v1); /* root */ root = i1; int i2 = newnode(qs); qs->data[i1].right = i2; qs->data[i2].nodetype = T_SINK; qs->data[i2].parent = i1; int i3 = newnode(qs); qs->data[i1].left = i3; qs->data[i3].nodetype = T_Y; _min(&qs->data[i3].yval, &s->v0, &s->v1); /* root */ qs->data[i3].parent = i1; int i4 = newnode(qs); qs->data[i3].left = i4; qs->data[i4].nodetype = T_SINK; qs->data[i4].parent = i3; int i5 = newnode(qs); qs->data[i3].right = i5; qs->data[i5].nodetype = T_X; qs->data[i5].segnum = segnum; qs->data[i5].parent = i3; int i6 = newnode(qs); qs->data[i5].left = i6; qs->data[i6].nodetype = T_SINK; qs->data[i6].parent = i5; int i7 = newnode(qs); qs->data[i5].right = i7; qs->data[i7].nodetype = T_SINK; qs->data[i7].parent = i5; t1 = newtrap(tr); /* middle left */ t2 = newtrap(tr); /* middle right */ t3 = newtrap(tr); /* bottom-most */ t4 = newtrap(tr); /* topmost */ tr->data[t1].hi = qs->data[i1].yval; tr->data[t2].hi = qs->data[i1].yval; tr->data[t4].lo = qs->data[i1].yval; tr->data[t1].lo = qs->data[i3].yval; tr->data[t2].lo = qs->data[i3].yval; tr->data[t3].hi = qs->data[i3].yval; tr->data[t4].hi.y = (double)(INF); tr->data[t4].hi.x = (double)(INF); tr->data[t3].lo.y = (double)-1 * (INF); tr->data[t3].lo.x = (double)-1 * (INF); tr->data[t1].rseg = segnum; tr->data[t2].lseg = segnum; tr->data[t1].u0 = t4; tr->data[t2].u0 = t4; tr->data[t1].d0 = t3; tr->data[t2].d0 = t3; tr->data[t4].d0 = t1; tr->data[t3].u0 = t1; tr->data[t4].d1 = t2; tr->data[t3].u1 = t2; tr->data[t1].sink = i6; tr->data[t2].sink = i7; tr->data[t3].sink = i4; tr->data[t4].sink = i2; tr->data[t1].state = ST_VALID; tr->data[t2].state = ST_VALID; tr->data[t3].state = ST_VALID; tr->data[t4].state = ST_VALID; qs->data[i2].trnum = t4; qs->data[i4].trnum = t3; qs->data[i6].trnum = t1; qs->data[i7].trnum = t2; s->is_inserted = true; return root; } /* Return true if the vertex v is to the left of line segment no. * segnum. Takes care of the degenerate cases when both the vertices * have the same y--cood, etc. */ static bool is_left_of (int segnum, segment_t* seg, pointf *v) { segment_t *s = &seg[segnum]; double area; if (_greater_than(&s->v1, &s->v0)) /* seg. going upwards */ { if (FP_EQUAL(s->v1.y, v->y)) { if (v->x < s->v1.x) area = 1.0; else area = -1.0; } else if (FP_EQUAL(s->v0.y, v->y)) { if (v->x < s->v0.x) area = 1.0; else area = -1.0; } else area = CROSS(s->v0, s->v1, *v); } else /* v0 > v1 */ { if (FP_EQUAL(s->v1.y, v->y)) { if (v->x < s->v1.x) area = 1.0; else area = -1.0; } else if (FP_EQUAL(s->v0.y, v->y)) { if (v->x < s->v0.x) area = 1.0; else area = -1.0; } else area = CROSS(s->v1, s->v0, (*v)); } return area > 0.0; } /* Returns true if the corresponding endpoint of the given segment is */ /* already inserted into the segment tree. Use the simple test of */ /* whether the segment which shares this endpoint is already inserted */ static bool inserted (int segnum, segment_t* seg, int whichpt) { if (whichpt == FIRSTPT) return seg[seg[segnum].prev].is_inserted; else return seg[seg[segnum].next].is_inserted; } /* This is query routine which determines which trapezoid does the * point v lie in. The return value is the trapezoid number. */ static int locate_endpoint (pointf *v, pointf *vo, int r, segment_t* seg, qnodes_t* qs) { qnode_t *rptr = &qs->data[r]; switch (rptr->nodetype) { case T_SINK: return rptr->trnum; case T_Y: if (_greater_than(v, &rptr->yval)) /* above */ return locate_endpoint(v, vo, rptr->right, seg, qs); else if (_equal_to(v, &rptr->yval)) /* the point is already */ { /* inserted. */ if (_greater_than(vo, &rptr->yval)) /* above */ return locate_endpoint(v, vo, rptr->right, seg, qs); else return locate_endpoint(v, vo, rptr->left, seg, qs); /* below */ } else return locate_endpoint(v, vo, rptr->left, seg, qs); /* below */ case T_X: if (_equal_to(v, &seg[rptr->segnum].v0) || _equal_to(v, &seg[rptr->segnum].v1)) { if (FP_EQUAL(v->y, vo->y)) /* horizontal segment */ { if (vo->x < v->x) return locate_endpoint(v, vo, rptr->left, seg, qs); /* left */ else return locate_endpoint(v, vo, rptr->right, seg, qs); /* right */ } else if (is_left_of(rptr->segnum, seg, vo)) return locate_endpoint(v, vo, rptr->left, seg, qs); /* left */ else return locate_endpoint(v, vo, rptr->right, seg, qs); /* right */ } else if (is_left_of(rptr->segnum, seg, v)) return locate_endpoint(v, vo, rptr->left, seg, qs); /* left */ else return locate_endpoint(v, vo, rptr->right, seg, qs); /* right */ default: fprintf(stderr, "unexpected case in locate_endpoint\n"); assert (0); break; } return 1; /* stop warning */ } /* Thread in the segment into the existing trapezoidation. The * limiting trapezoids are given by tfirst and tlast (which are the * trapezoids containing the two endpoints of the segment. Merges all * possible trapezoids which flank this segment and have been recently * divided because of its insertion */ static void merge_trapezoids(int segnum, int tfirst, int tlast, int side, traps_t *tr, qnodes_t* qs) { int t; /* First merge polys on the LHS */ t = tfirst; while (t > 0 && _greater_than_equal_to(&tr->data[t].lo, &tr->data[tlast].lo)) { int tnext, ptnext; bool cond; if (side == S_LEFT) cond = ((tnext = tr->data[t].d0) > 0 && tr->data[tnext].rseg == segnum) || ((tnext = tr->data[t].d1) > 0 && tr->data[tnext].rseg == segnum); else cond = ((tnext = tr->data[t].d0) > 0 && tr->data[tnext].lseg == segnum) || ((tnext = tr->data[t].d1) > 0 && tr->data[tnext].lseg == segnum); if (cond) { if (tr->data[t].lseg == tr->data[tnext].lseg && tr->data[t].rseg == tr->data[tnext].rseg) /* good neighbours */ { /* merge them */ /* Use the upper node as the new node i.e. t */ ptnext = qs->data[tr->data[tnext].sink].parent; if (qs->data[ptnext].left == tr->data[tnext].sink) qs->data[ptnext].left = tr->data[t].sink; else qs->data[ptnext].right = tr->data[t].sink; /* redirect parent */ /* Change the upper neighbours of the lower trapezoids */ if ((tr->data[t].d0 = tr->data[tnext].d0) > 0) { if (tr->data[tr->data[t].d0].u0 == tnext) tr->data[tr->data[t].d0].u0 = t; else if (tr->data[tr->data[t].d0].u1 == tnext) tr->data[tr->data[t].d0].u1 = t; } if ((tr->data[t].d1 = tr->data[tnext].d1) > 0) { if (tr->data[tr->data[t].d1].u0 == tnext) tr->data[tr->data[t].d1].u0 = t; else if (tr->data[tr->data[t].d1].u1 == tnext) tr->data[tr->data[t].d1].u1 = t; } tr->data[t].lo = tr->data[tnext].lo; tr->data[tnext].state = ST_INVALID; /* invalidate the lower */ /* trapezium */ } else /* not good neighbours */ t = tnext; } else /* do not satisfy the outer if */ t = tnext; } /* end-while */ } static void update_trapezoid(segment_t *s, segment_t *seg, traps_t *tr, int t, int tn) { if (tr->data[t].u0 > 0 && tr->data[t].u1 > 0) { /* continuation of a chain from abv. */ if (tr->data[t].usave > 0) /* three upper neighbours */ { if (tr->data[t].uside == S_LEFT) { tr->data[tn].u0 = tr->data[t].u1; tr->data[t].u1 = -1; tr->data[tn].u1 = tr->data[t].usave; tr->data[tr->data[t].u0].d0 = t; tr->data[tr->data[tn].u0].d0 = tn; tr->data[tr->data[tn].u1].d0 = tn; } else /* intersects in the right */ { tr->data[tn].u1 = -1; tr->data[tn].u0 = tr->data[t].u1; tr->data[t].u1 = tr->data[t].u0; tr->data[t].u0 = tr->data[t].usave; tr->data[tr->data[t].u0].d0 = t; tr->data[tr->data[t].u1].d0 = t; tr->data[tr->data[tn].u0].d0 = tn; } tr->data[t].usave = 0; tr->data[tn].usave = 0; } else /* No usave.... simple case */ { tr->data[tn].u0 = tr->data[t].u1; tr->data[t].u1 = -1; tr->data[tn].u1 = -1; tr->data[tr->data[tn].u0].d0 = tn; } } else { /* fresh seg. or upward cusp */ int tmp_u = tr->data[t].u0; int td0, td1; if ((td0 = tr->data[tmp_u].d0) > 0 && (td1 = tr->data[tmp_u].d1) > 0) { /* upward cusp */ if (tr->data[td0].rseg > 0 && !is_left_of(tr->data[td0].rseg, seg, &s->v1)) { tr->data[t].u0 = -1; tr->data[t].u1 = -1; tr->data[tn].u1 = -1; tr->data[tr->data[tn].u0].d1 = tn; } else /* cusp going leftwards */ { tr->data[tn].u0 = -1; tr->data[tn].u1 = -1; tr->data[t].u1 = -1; tr->data[tr->data[t].u0].d0 = t; } } else /* fresh segment */ { tr->data[tr->data[t].u0].d0 = t; tr->data[tr->data[t].u0].d1 = tn; } } } /* Add in the new segment into the trapezoidation and update Q and T * structures. First locate the two endpoints of the segment in the * Q-structure. Then start from the topmost trapezoid and go down to * the lower trapezoid dividing all the trapezoids in between . */ static void add_segment(int segnum, segment_t *seg, traps_t *tr, qnodes_t *qs) { segment_t s; int tu, tl, sk, tfirst, tlast; int tfirstr = 0, tlastr = 0, tfirstl = 0, tlastl = 0; int i1, i2, t, tn; pointf tpt; int tribot = 0; bool is_swapped; int tmptriseg; s = seg[segnum]; if (_greater_than(&s.v1, &s.v0)) /* Get higher vertex in v0 */ { int tmp; tpt = s.v0; s.v0 = s.v1; s.v1 = tpt; tmp = s.root0; s.root0 = s.root1; s.root1 = tmp; is_swapped = true; } else is_swapped = false; if (!inserted(segnum, seg, is_swapped ? LASTPT : FIRSTPT)) /* insert v0 in the tree */ { int tmp_d; tu = locate_endpoint(&s.v0, &s.v1, s.root0, seg, qs); tl = newtrap(tr); /* tl is the new lower trapezoid */ tr->data[tl].state = ST_VALID; tr->data[tl] = tr->data[tu]; tr->data[tu].lo.y = s.v0.y; tr->data[tl].hi.y = s.v0.y; tr->data[tu].lo.x = s.v0.x; tr->data[tl].hi.x = s.v0.x; tr->data[tu].d0 = tl; tr->data[tu].d1 = 0; tr->data[tl].u0 = tu; tr->data[tl].u1 = 0; if ((tmp_d = tr->data[tl].d0) > 0 && tr->data[tmp_d].u0 == tu) tr->data[tmp_d].u0 = tl; if ((tmp_d = tr->data[tl].d0) > 0 && tr->data[tmp_d].u1 == tu) tr->data[tmp_d].u1 = tl; if ((tmp_d = tr->data[tl].d1) > 0 && tr->data[tmp_d].u0 == tu) tr->data[tmp_d].u0 = tl; if ((tmp_d = tr->data[tl].d1) > 0 && tr->data[tmp_d].u1 == tu) tr->data[tmp_d].u1 = tl; /* Now update the query structure and obtain the sinks for the */ /* two trapezoids */ i1 = newnode(qs); /* Upper trapezoid sink */ i2 = newnode(qs); /* Lower trapezoid sink */ sk = tr->data[tu].sink; qs->data[sk].nodetype = T_Y; qs->data[sk].yval = s.v0; qs->data[sk].segnum = segnum; /* not really reqd ... maybe later */ qs->data[sk].left = i2; qs->data[sk].right = i1; qs->data[i1].nodetype = T_SINK; qs->data[i1].trnum = tu; qs->data[i1].parent = sk; qs->data[i2].nodetype = T_SINK; qs->data[i2].trnum = tl; qs->data[i2].parent = sk; tr->data[tu].sink = i1; tr->data[tl].sink = i2; tfirst = tl; } else /* v0 already present */ { /* Get the topmost intersecting trapezoid */ tfirst = locate_endpoint(&s.v0, &s.v1, s.root0, seg, qs); } if (!inserted(segnum, seg, is_swapped ? FIRSTPT : LASTPT)) /* insert v1 in the tree */ { int tmp_d; tu = locate_endpoint(&s.v1, &s.v0, s.root1, seg, qs); tl = newtrap(tr); /* tl is the new lower trapezoid */ tr->data[tl].state = ST_VALID; tr->data[tl] = tr->data[tu]; tr->data[tu].lo.y = tr->data[tl].hi.y = s.v1.y; tr->data[tu].lo.x = tr->data[tl].hi.x = s.v1.x; tr->data[tu].d0 = tl; tr->data[tu].d1 = 0; tr->data[tl].u0 = tu; tr->data[tl].u1 = 0; if ((tmp_d = tr->data[tl].d0) > 0 && tr->data[tmp_d].u0 == tu) tr->data[tmp_d].u0 = tl; if ((tmp_d = tr->data[tl].d0) > 0 && tr->data[tmp_d].u1 == tu) tr->data[tmp_d].u1 = tl; if ((tmp_d = tr->data[tl].d1) > 0 && tr->data[tmp_d].u0 == tu) tr->data[tmp_d].u0 = tl; if ((tmp_d = tr->data[tl].d1) > 0 && tr->data[tmp_d].u1 == tu) tr->data[tmp_d].u1 = tl; /* Now update the query structure and obtain the sinks for the */ /* two trapezoids */ i1 = newnode(qs); /* Upper trapezoid sink */ i2 = newnode(qs); /* Lower trapezoid sink */ sk = tr->data[tu].sink; qs->data[sk].nodetype = T_Y; qs->data[sk].yval = s.v1; qs->data[sk].segnum = segnum; /* not really reqd ... maybe later */ qs->data[sk].left = i2; qs->data[sk].right = i1; qs->data[i1].nodetype = T_SINK; qs->data[i1].trnum = tu; qs->data[i1].parent = sk; qs->data[i2].nodetype = T_SINK; qs->data[i2].trnum = tl; qs->data[i2].parent = sk; tr->data[tu].sink = i1; tr->data[tl].sink = i2; tlast = tu; } else /* v1 already present */ { /* Get the lowermost intersecting trapezoid */ tlast = locate_endpoint(&s.v1, &s.v0, s.root1, seg, qs); tribot = 1; } /* Thread the segment into the query tree creating a new X-node */ /* First, split all the trapezoids which are intersected by s into */ /* two */ t = tfirst; /* topmost trapezoid */ while (t > 0 && _greater_than_equal_to(&tr->data[t].lo, &tr->data[tlast].lo)) /* traverse from top to bot */ { int t_sav, tn_sav; sk = tr->data[t].sink; i1 = newnode(qs); /* left trapezoid sink */ i2 = newnode(qs); /* right trapezoid sink */ qs->data[sk].nodetype = T_X; qs->data[sk].segnum = segnum; qs->data[sk].left = i1; qs->data[sk].right = i2; qs->data[i1].nodetype = T_SINK; /* left trapezoid (use existing one) */ qs->data[i1].trnum = t; qs->data[i1].parent = sk; qs->data[i2].nodetype = T_SINK; /* right trapezoid (allocate new) */ qs->data[i2].trnum = tn = newtrap(tr); tr->data[tn].state = ST_VALID; qs->data[i2].parent = sk; if (t == tfirst) tfirstr = tn; if (_equal_to(&tr->data[t].lo, &tr->data[tlast].lo)) tlastr = tn; tr->data[tn] = tr->data[t]; tr->data[t].sink = i1; tr->data[tn].sink = i2; t_sav = t; tn_sav = tn; /* error */ if (tr->data[t].d0 <= 0 && tr->data[t].d1 <= 0) /* case cannot arise */ { fprintf(stderr, "add_segment: error\n"); break; } /* only one trapezoid below. partition t into two and make the */ /* two resulting trapezoids t and tn as the upper neighbours of */ /* the sole lower trapezoid */ else if (tr->data[t].d0 > 0 && tr->data[t].d1 <= 0) { /* Only one trapezoid below */ update_trapezoid(&s, seg, tr, t, tn); if (FP_EQUAL(tr->data[t].lo.y, tr->data[tlast].lo.y) && FP_EQUAL(tr->data[t].lo.x, tr->data[tlast].lo.x) && tribot) { /* bottom forms a triangle */ if (is_swapped) tmptriseg = seg[segnum].prev; else tmptriseg = seg[segnum].next; if (tmptriseg > 0 && is_left_of(tmptriseg, seg, &s.v0)) { /* L-R downward cusp */ tr->data[tr->data[t].d0].u0 = t; tr->data[tn].d0 = -1; tr->data[tn].d1 = -1; } else { /* R-L downward cusp */ tr->data[tr->data[tn].d0].u1 = tn; tr->data[t].d0 = -1; tr->data[t].d1 = -1; } } else { if (tr->data[tr->data[t].d0].u0 > 0 && tr->data[tr->data[t].d0].u1 > 0) { if (tr->data[tr->data[t].d0].u0 == t) /* passes through LHS */ { tr->data[tr->data[t].d0].usave = tr->data[tr->data[t].d0].u1; tr->data[tr->data[t].d0].uside = S_LEFT; } else { tr->data[tr->data[t].d0].usave = tr->data[tr->data[t].d0].u0; tr->data[tr->data[t].d0].uside = S_RIGHT; } } tr->data[tr->data[t].d0].u0 = t; tr->data[tr->data[t].d0].u1 = tn; } t = tr->data[t].d0; } else if (tr->data[t].d0 <= 0 && tr->data[t].d1 > 0) { /* Only one trapezoid below */ update_trapezoid(&s, seg, tr, t, tn); if (FP_EQUAL(tr->data[t].lo.y, tr->data[tlast].lo.y) && FP_EQUAL(tr->data[t].lo.x, tr->data[tlast].lo.x) && tribot) { /* bottom forms a triangle */ if (is_swapped) tmptriseg = seg[segnum].prev; else tmptriseg = seg[segnum].next; if (tmptriseg > 0 && is_left_of(tmptriseg, seg, &s.v0)) { /* L-R downward cusp */ tr->data[tr->data[t].d1].u0 = t; tr->data[tn].d0 = -1; tr->data[tn].d1 = -1; } else { /* R-L downward cusp */ tr->data[tr->data[tn].d1].u1 = tn; tr->data[t].d0 = -1; tr->data[t].d1 = -1; } } else { if (tr->data[tr->data[t].d1].u0 > 0 && tr->data[tr->data[t].d1].u1 > 0) { if (tr->data[tr->data[t].d1].u0 == t) /* passes through LHS */ { tr->data[tr->data[t].d1].usave = tr->data[tr->data[t].d1].u1; tr->data[tr->data[t].d1].uside = S_LEFT; } else { tr->data[tr->data[t].d1].usave = tr->data[tr->data[t].d1].u0; tr->data[tr->data[t].d1].uside = S_RIGHT; } } tr->data[tr->data[t].d1].u0 = t; tr->data[tr->data[t].d1].u1 = tn; } t = tr->data[t].d1; } /* two trapezoids below. Find out which one is intersected by */ /* this segment and proceed down that one */ else { double y0, yt; pointf tmppt; int tnext; bool i_d0, i_d1; i_d0 = i_d1 = false; if (FP_EQUAL(tr->data[t].lo.y, s.v0.y)) { if (tr->data[t].lo.x > s.v0.x) i_d0 = true; else i_d1 = true; } else { tmppt.y = y0 = tr->data[t].lo.y; yt = (y0 - s.v0.y)/(s.v1.y - s.v0.y); tmppt.x = s.v0.x + yt * (s.v1.x - s.v0.x); if (_less_than(&tmppt, &tr->data[t].lo)) i_d0 = true; else i_d1 = true; } /* check continuity from the top so that the lower-neighbour */ /* values are properly filled for the upper trapezoid */ update_trapezoid(&s, seg, tr, t, tn); if (FP_EQUAL(tr->data[t].lo.y, tr->data[tlast].lo.y) && FP_EQUAL(tr->data[t].lo.x, tr->data[tlast].lo.x) && tribot) { /* this case arises only at the lowest trapezoid.. i.e. tlast, if the lower endpoint of the segment is already inserted in the structure */ tr->data[tr->data[t].d0].u0 = t; tr->data[tr->data[t].d0].u1 = -1; tr->data[tr->data[t].d1].u0 = tn; tr->data[tr->data[t].d1].u1 = -1; tr->data[tn].d0 = tr->data[t].d1; tr->data[t].d1 = -1; tr->data[tn].d1 = -1; tnext = tr->data[t].d1; } else if (i_d0) /* intersecting d0 */ { tr->data[tr->data[t].d0].u0 = t; tr->data[tr->data[t].d0].u1 = tn; tr->data[tr->data[t].d1].u0 = tn; tr->data[tr->data[t].d1].u1 = -1; /* new code to determine the bottom neighbours of the */ /* newly partitioned trapezoid */ tr->data[t].d1 = -1; tnext = tr->data[t].d0; } else /* intersecting d1 */ { tr->data[tr->data[t].d0].u0 = t; tr->data[tr->data[t].d0].u1 = -1; tr->data[tr->data[t].d1].u0 = t; tr->data[tr->data[t].d1].u1 = tn; /* new code to determine the bottom neighbours of the */ /* newly partitioned trapezoid */ tr->data[tn].d0 = tr->data[t].d1; tr->data[tn].d1 = -1; tnext = tr->data[t].d1; } t = tnext; } tr->data[t_sav].rseg = segnum; tr->data[tn_sav].lseg = segnum; } /* end-while */ /* Now combine those trapezoids which share common segments. We can */ /* use the pointers to the parent to connect these together. This */ /* works only because all these new trapezoids have been formed */ /* due to splitting by the segment, and hence have only one parent */ tfirstl = tfirst; tlastl = tlast; merge_trapezoids(segnum, tfirstl, tlastl, S_LEFT, tr, qs); merge_trapezoids(segnum, tfirstr, tlastr, S_RIGHT, tr, qs); seg[segnum].is_inserted = true; } /* Update the roots stored for each of the endpoints of the segment. * This is done to speed up the location-query for the endpoint when * the segment is inserted into the trapezoidation subsequently */ static void find_new_roots(int segnum, segment_t *seg, traps_t *tr, qnodes_t *qs) { segment_t *s = &seg[segnum]; if (s->is_inserted) return; s->root0 = locate_endpoint(&s->v0, &s->v1, s->root0, seg, qs); s->root0 = tr->data[s->root0].sink; s->root1 = locate_endpoint(&s->v1, &s->v0, s->root1, seg, qs); s->root1 = tr->data[s->root1].sink; } /* Get log*n for given n */ static int math_logstar_n(int n) { int i; double v; for (i = 0, v = (double) n; v >= 1; i++) v = log2(v); return i - 1; } static int math_N(int n, int h) { int i; double v; for (i = 0, v = (double) n; i < h; i++) v = log2(v); return (int) ceil((double) 1.0*n/v); } /* Main routine to perform trapezoidation */ traps_t construct_trapezoids(int nseg, segment_t *seg, int *permute) { int i; int root, h; int segi = 1; // We will append later nodes by expanding this on-demand. First node is a // sentinel. qnodes_t qs = {.length = 1, .data = gv_calloc(1, sizeof(qnode_t))}; // First trapezoid is reserved as a sentinel. We will append later // trapezoids by expanding this on-demand. traps_t tr = {.length = 1, .data = gv_calloc(1, sizeof(trap_t))}; /* Add the first segment and get the query structure and trapezoid */ /* list initialised */ root = init_query_structure(permute[segi++], seg, &tr, &qs); for (i = 1; i <= nseg; i++) seg[i].root0 = seg[i].root1 = root; for (h = 1; h <= math_logstar_n(nseg); h++) { for (i = math_N(nseg, h -1) + 1; i <= math_N(nseg, h); i++) add_segment(permute[segi++], seg, &tr, &qs); /* Find a new root for each of the segment endpoints */ for (i = 1; i <= nseg; i++) find_new_roots(i, seg, &tr, &qs); } for (i = math_N(nseg, math_logstar_n(nseg)) + 1; i <= nseg; i++) add_segment(permute[segi++], seg, &tr, &qs); free(qs.data); return tr; }