/************************************************************************* * Copyright (c) 2011 AT&T Intellectual Property * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * https://www.eclipse.org/legal/epl-v10.html * * Contributors: Details at https://graphviz.org *************************************************************************/ #include #include #include #include #include #include #include #define EPSILON1 1E-3 #define EPSILON2 1E-6 typedef struct tna_t { double t; Ppoint_t a[2]; } tna_t; #define DISTSQ(a, b) ( \ (((a).x - (b).x) * ((a).x - (b).x)) + (((a).y - (b).y) * ((a).y - (b).y)) \ ) #define POINTSIZE sizeof (Ppoint_t) static Ppoint_t *ops; static size_t opn, opl; static int reallyroutespline(Pedge_t *, size_t, Ppoint_t *, int, Ppoint_t, Ppoint_t); static int mkspline(Ppoint_t *, int, tna_t *, Ppoint_t, Ppoint_t, Ppoint_t *, Ppoint_t *, Ppoint_t *, Ppoint_t *); static int splinefits(Pedge_t *, size_t, Ppoint_t, Pvector_t, Ppoint_t, Pvector_t, Ppoint_t *, int); static int splineisinside(Pedge_t *, size_t, Ppoint_t *); static int splineintersectsline(Ppoint_t *, Ppoint_t *, double *); static void points2coeff(double, double, double, double, double *); static void addroot(double, double *, int *); static Pvector_t normv(Pvector_t); static int growops(size_t); static Ppoint_t add(Ppoint_t, Ppoint_t); static Ppoint_t sub(Ppoint_t, Ppoint_t); static double dist(Ppoint_t, Ppoint_t); static Ppoint_t scale(Ppoint_t, double); static double dot(Ppoint_t, Ppoint_t); static double B0(double t); static double B1(double t); static double B2(double t); static double B3(double t); static double B01(double t); static double B23(double t); /* Proutespline: * Given a set of barrier line segments edges as obstacles, a template * path input_route, and endpoint vectors endpoint_slopes, construct a spline * fitting the input and endpoint vectors, and return in output_route. * Return 0 on success and -1 on failure, including no memory. */ int Proutespline(Pedge_t *barriers, size_t n_barriers, Ppolyline_t input_route, Ppoint_t endpoint_slopes[2], Ppolyline_t *output_route) { Ppoint_t *inps; int inpn; /* unpack into previous format rather than modify legacy code */ inps = input_route.ps; assert(input_route.pn <= INT_MAX); inpn = (int)input_route.pn; /* generate the splines */ endpoint_slopes[0] = normv(endpoint_slopes[0]); endpoint_slopes[1] = normv(endpoint_slopes[1]); opl = 0; if (growops(4) < 0) { return -1; } ops[opl++] = inps[0]; if (reallyroutespline(barriers, n_barriers, inps, inpn, endpoint_slopes[0], endpoint_slopes[1]) == -1) return -1; output_route->pn = opl; output_route->ps = ops; return 0; } static int reallyroutespline(Pedge_t *edges, size_t edgen, Ppoint_t *inps, int inpn, Ppoint_t ev0, Ppoint_t ev1) { Ppoint_t p1, p2, cp1, cp2, p; Pvector_t v1, v2, splitv, splitv1, splitv2; double maxd, d, t; int maxi, i, spliti; static tna_t *tnas; static int tnan; if (tnan < inpn) { tna_t *new_tnas = realloc(tnas, sizeof(tna_t) * (size_t)inpn); if (new_tnas == NULL) return -1; tnas = new_tnas; tnan = inpn; } tnas[0].t = 0; for (i = 1; i < inpn; i++) tnas[i].t = tnas[i - 1].t + dist(inps[i], inps[i - 1]); for (i = 1; i < inpn; i++) tnas[i].t /= tnas[inpn - 1].t; for (i = 0; i < inpn; i++) { tnas[i].a[0] = scale(ev0, B1(tnas[i].t)); tnas[i].a[1] = scale(ev1, B2(tnas[i].t)); } if (mkspline(inps, inpn, tnas, ev0, ev1, &p1, &v1, &p2, &v2) == -1) return -1; int fit = splinefits(edges, edgen, p1, v1, p2, v2, inps, inpn); if (fit > 0) { return 0; } if (fit < 0) { return -1; } cp1 = add(p1, scale(v1, 1 / 3.0)); cp2 = sub(p2, scale(v2, 1 / 3.0)); for (maxd = -1, maxi = -1, i = 1; i < inpn - 1; i++) { t = tnas[i].t; p.x = B0(t) * p1.x + B1(t) * cp1.x + B2(t) * cp2.x + B3(t) * p2.x; p.y = B0(t) * p1.y + B1(t) * cp1.y + B2(t) * cp2.y + B3(t) * p2.y; if ((d = dist(p, inps[i])) > maxd) maxd = d, maxi = i; } spliti = maxi; splitv1 = normv(sub(inps[spliti], inps[spliti - 1])); splitv2 = normv(sub(inps[spliti + 1], inps[spliti])); splitv = normv(add(splitv1, splitv2)); if (reallyroutespline(edges, edgen, inps, spliti + 1, ev0, splitv) < 0) { return -1; } if (reallyroutespline(edges, edgen, &inps[spliti], inpn - spliti, splitv, ev1) < 0) { return -1; } return 0; } static int mkspline(Ppoint_t * inps, int inpn, tna_t * tnas, Ppoint_t ev0, Ppoint_t ev1, Ppoint_t * sp0, Ppoint_t * sv0, Ppoint_t * sp1, Ppoint_t * sv1) { Ppoint_t tmp; double c[2][2], x[2], det01, det0X, detX1; double d01, scale0, scale3; int i; scale0 = scale3 = 0.0; c[0][0] = c[0][1] = c[1][0] = c[1][1] = 0.0; x[0] = x[1] = 0.0; for (i = 0; i < inpn; i++) { c[0][0] += dot(tnas[i].a[0], tnas[i].a[0]); c[0][1] += dot(tnas[i].a[0], tnas[i].a[1]); c[1][0] = c[0][1]; c[1][1] += dot(tnas[i].a[1], tnas[i].a[1]); tmp = sub(inps[i], add(scale(inps[0], B01(tnas[i].t)), scale(inps[inpn - 1], B23(tnas[i].t)))); x[0] += dot(tnas[i].a[0], tmp); x[1] += dot(tnas[i].a[1], tmp); } det01 = c[0][0] * c[1][1] - c[1][0] * c[0][1]; det0X = c[0][0] * x[1] - c[0][1] * x[0]; detX1 = x[0] * c[1][1] - x[1] * c[0][1]; if (fabs(det01) >= 1e-6) { scale0 = detX1 / det01; scale3 = det0X / det01; } if (fabs(det01) < 1e-6 || scale0 <= 0.0 || scale3 <= 0.0) { d01 = dist(inps[0], inps[inpn - 1]) / 3.0; scale0 = d01; scale3 = d01; } *sp0 = inps[0]; *sv0 = scale(ev0, scale0); *sp1 = inps[inpn - 1]; *sv1 = scale(ev1, scale3); return 0; } static double dist_n(Ppoint_t * p, int n) { int i; double rv; rv = 0.0; for (i = 1; i < n; i++) { rv += hypot(p[i].x - p[i - 1].x, p[i].y - p[i - 1].y); } return rv; } static int splinefits(Pedge_t *edges, size_t edgen, Ppoint_t pa, Pvector_t va, Ppoint_t pb, Pvector_t vb, Ppoint_t *inps, int inpn) { Ppoint_t sps[4]; double a; int pi; int forceflag; int first = 1; forceflag = (inpn == 2 ? 1 : 0); a = 4; for (;;) { sps[0].x = pa.x; sps[0].y = pa.y; sps[1].x = pa.x + a * va.x / 3.0; sps[1].y = pa.y + a * va.y / 3.0; sps[2].x = pb.x - a * vb.x / 3.0; sps[2].y = pb.y - a * vb.y / 3.0; sps[3].x = pb.x; sps[3].y = pb.y; /* shortcuts (paths shorter than the shortest path) not allowed - * they must be outside the constraint polygon. this can happen * if the candidate spline intersects the constraint polygon exactly * on sides or vertices. maybe this could be more elegant, but * it solves the immediate problem. we could also try jittering the * constraint polygon, or computing the candidate spline more carefully, * for example using the path. SCN */ if (first && (dist_n(sps, 4) < (dist_n(inps, inpn) - EPSILON1))) return 0; first = 0; if (splineisinside(edges, edgen, &sps[0])) { if (growops(opl + 4) < 0) { return -1; } for (pi = 1; pi < 4; pi++) ops[opl].x = sps[pi].x, ops[opl++].y = sps[pi].y; #if defined(DEBUG) && DEBUG >= 1 fprintf(stderr, "success: %f %f\n", a, a); #endif return 1; } // is `a` 0, accounting for the precision with which it was computed (on the // last loop iteration) below? if (a < 0.005) { if (forceflag) { if (growops(opl + 4) < 0) { return -1; } for (pi = 1; pi < 4; pi++) ops[opl].x = sps[pi].x, ops[opl++].y = sps[pi].y; #if defined(DEBUG) && DEBUG >= 1 fprintf(stderr, "forced straight line: %f %f\n", a, a); #endif return 1; } break; } if (a > .01) a /= 2; else a = 0; } #if defined(DEBUG) && DEBUG >= 1 fprintf(stderr, "failure\n"); #endif return 0; } static int splineisinside(Pedge_t *edges, size_t edgen, Ppoint_t *sps) { double roots[4]; int rooti, rootn; Ppoint_t lps[2], ip; double t, ta, tb, tc, td; for (size_t ei = 0; ei < edgen; ei++) { lps[0] = edges[ei].a, lps[1] = edges[ei].b; if ((rootn = splineintersectsline(sps, lps, roots)) == 4) continue; for (rooti = 0; rooti < rootn; rooti++) { if (roots[rooti] < EPSILON2 || roots[rooti] > 1 - EPSILON2) continue; t = roots[rooti]; td = t * t * t; tc = 3 * t * t * (1 - t); tb = 3 * t * (1 - t) * (1 - t); ta = (1 - t) * (1 - t) * (1 - t); ip.x = ta * sps[0].x + tb * sps[1].x + tc * sps[2].x + td * sps[3].x; ip.y = ta * sps[0].y + tb * sps[1].y + tc * sps[2].y + td * sps[3].y; if (DISTSQ(ip, lps[0]) < EPSILON1 || DISTSQ(ip, lps[1]) < EPSILON1) continue; return 0; } } return 1; } static int splineintersectsline(Ppoint_t * sps, Ppoint_t * lps, double *roots) { double scoeff[4], xcoeff[2], ycoeff[2]; double xroots[3], yroots[3], tv, sv, rat; int rootn, xrootn, yrootn, i, j; xcoeff[0] = lps[0].x; xcoeff[1] = lps[1].x - lps[0].x; ycoeff[0] = lps[0].y; ycoeff[1] = lps[1].y - lps[0].y; rootn = 0; if (xcoeff[1] == 0) { if (ycoeff[1] == 0) { points2coeff(sps[0].x, sps[1].x, sps[2].x, sps[3].x, scoeff); scoeff[0] -= xcoeff[0]; xrootn = solve3(scoeff, xroots); points2coeff(sps[0].y, sps[1].y, sps[2].y, sps[3].y, scoeff); scoeff[0] -= ycoeff[0]; yrootn = solve3(scoeff, yroots); if (xrootn == 4) if (yrootn == 4) return 4; else for (j = 0; j < yrootn; j++) addroot(yroots[j], roots, &rootn); else if (yrootn == 4) for (i = 0; i < xrootn; i++) addroot(xroots[i], roots, &rootn); else for (i = 0; i < xrootn; i++) for (j = 0; j < yrootn; j++) if (xroots[i] == yroots[j]) addroot(xroots[i], roots, &rootn); return rootn; } else { points2coeff(sps[0].x, sps[1].x, sps[2].x, sps[3].x, scoeff); scoeff[0] -= xcoeff[0]; xrootn = solve3(scoeff, xroots); if (xrootn == 4) return 4; for (i = 0; i < xrootn; i++) { tv = xroots[i]; if (tv >= 0 && tv <= 1) { points2coeff(sps[0].y, sps[1].y, sps[2].y, sps[3].y, scoeff); sv = scoeff[0] + tv * (scoeff[1] + tv * (scoeff[2] + tv * scoeff[3])); sv = (sv - ycoeff[0]) / ycoeff[1]; if ((0 <= sv) && (sv <= 1)) addroot(tv, roots, &rootn); } } return rootn; } } else { rat = ycoeff[1] / xcoeff[1]; points2coeff(sps[0].y - rat * sps[0].x, sps[1].y - rat * sps[1].x, sps[2].y - rat * sps[2].x, sps[3].y - rat * sps[3].x, scoeff); scoeff[0] += rat * xcoeff[0] - ycoeff[0]; xrootn = solve3(scoeff, xroots); if (xrootn == 4) return 4; for (i = 0; i < xrootn; i++) { tv = xroots[i]; if (tv >= 0 && tv <= 1) { points2coeff(sps[0].x, sps[1].x, sps[2].x, sps[3].x, scoeff); sv = scoeff[0] + tv * (scoeff[1] + tv * (scoeff[2] + tv * scoeff[3])); sv = (sv - xcoeff[0]) / xcoeff[1]; if ((0 <= sv) && (sv <= 1)) addroot(tv, roots, &rootn); } } return rootn; } } static void points2coeff(double v0, double v1, double v2, double v3, double *coeff) { coeff[3] = v3 + 3 * v1 - (v0 + 3 * v2); coeff[2] = 3 * v0 + 3 * v2 - 6 * v1; coeff[1] = 3 * (v1 - v0); coeff[0] = v0; } static void addroot(double root, double *roots, int *rootnp) { if (root >= 0 && root <= 1) roots[*rootnp] = root, (*rootnp)++; } static Pvector_t normv(Pvector_t v) { double d; d = v.x * v.x + v.y * v.y; if (d > 1e-6) { d = sqrt(d); v.x /= d, v.y /= d; } return v; } static int growops(size_t newopn) { if (newopn <= opn) return 0; if (!(ops = realloc(ops, POINTSIZE * newopn))) { return -1; } opn = newopn; return 0; } static Ppoint_t add(Ppoint_t p1, Ppoint_t p2) { p1.x += p2.x, p1.y += p2.y; return p1; } static Ppoint_t sub(Ppoint_t p1, Ppoint_t p2) { p1.x -= p2.x, p1.y -= p2.y; return p1; } static double dist(Ppoint_t p1, Ppoint_t p2) { double dx, dy; dx = p2.x - p1.x, dy = p2.y - p1.y; return hypot(dx, dy); } static Ppoint_t scale(Ppoint_t p, double c) { p.x *= c, p.y *= c; return p; } static double dot(Ppoint_t p1, Ppoint_t p2) { return p1.x * p2.x + p1.y * p2.y; } static double B0(double t) { double tmp = 1.0 - t; return tmp * tmp * tmp; } static double B1(double t) { double tmp = 1.0 - t; return 3 * t * tmp * tmp; } static double B2(double t) { double tmp = 1.0 - t; return 3 * t * t * tmp; } static double B3(double t) { return t * t * t; } static double B01(double t) { double tmp = 1.0 - t; return tmp * tmp * (tmp + 3 * t); } static double B23(double t) { double tmp = 1.0 - t; return t * t * (3 * tmp + t); }