/************************************************************************* * Copyright (c) 2011 AT&T Intellectual Property * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * https://www.eclipse.org/legal/epl-v10.html * * Contributors: Details at https://graphviz.org *************************************************************************/ #include #include static int solve1(double *coeff, double *roots); static int solve2(double *coeff, double *roots); #ifndef M_PI #define M_PI 3.14159265358979323846 #endif #define EPS 1E-7 #define AEQ0(x) (((x) < EPS) && ((x) > -EPS)) int solve3(double *coeff, double *roots) { double a, b, c, d; int rootn, i; double p, q, disc, b_over_3a, c_over_a, d_over_a; double r, theta, temp, alpha, beta; a = coeff[3], b = coeff[2], c = coeff[1], d = coeff[0]; if (AEQ0(a)) return solve2(coeff, roots); b_over_3a = b / (3 * a); c_over_a = c / a; d_over_a = d / a; p = b_over_3a * b_over_3a; q = 2 * b_over_3a * p - b_over_3a * c_over_a + d_over_a; p = c_over_a / 3 - p; disc = q * q + 4 * p * p * p; if (disc < 0) { r = .5 * sqrt(-disc + q * q); theta = atan2(sqrt(-disc), -q); temp = 2 * cbrt(r); roots[0] = temp * cos(theta / 3); roots[1] = temp * cos((theta + M_PI + M_PI) / 3); roots[2] = temp * cos((theta - M_PI - M_PI) / 3); rootn = 3; } else { alpha = .5 * (sqrt(disc) - q); beta = -q - alpha; roots[0] = cbrt(alpha) + cbrt(beta); if (disc > 0) rootn = 1; else roots[1] = roots[2] = -.5 * roots[0], rootn = 3; } for (i = 0; i < rootn; i++) roots[i] -= b_over_3a; return rootn; } static int solve2(double *coeff, double *roots) { double a, b, c; double disc, b_over_2a, c_over_a; a = coeff[2], b = coeff[1], c = coeff[0]; if (AEQ0(a)) return solve1(coeff, roots); b_over_2a = b / (2 * a); c_over_a = c / a; disc = b_over_2a * b_over_2a - c_over_a; if (disc < 0) { return 0; } else if (disc > 0) { roots[0] = -b_over_2a + sqrt(disc); roots[1] = -2 * b_over_2a - roots[0]; return 2; } roots[0] = -b_over_2a; return 1; } static int solve1(double *coeff, double *roots) { double a, b; a = coeff[1], b = coeff[0]; if (AEQ0(a)) { if (AEQ0(b)) return 4; else return 0; } roots[0] = -b / a; return 1; }