/************************************************************************* * Copyright (c) 2011 AT&T Intellectual Property * All rights reserved. This program and the accompanying materials * are made available under the terms of the Eclipse Public License v1.0 * which accompanies this distribution, and is available at * https://www.eclipse.org/legal/epl-v10.html * * Contributors: Details at https://graphviz.org *************************************************************************/ #include #include #include #include #include #include #include #include #include #include static size_t size_of_matrix_type(int type){ size_t size = 0; switch (type){ case MATRIX_TYPE_REAL: size = sizeof(double); break; case MATRIX_TYPE_COMPLEX: size = 2*sizeof(double); break; case MATRIX_TYPE_INTEGER: size = sizeof(int); break; case MATRIX_TYPE_PATTERN: size = 0; break; case MATRIX_TYPE_UNKNOWN: size = 0; break; default: size = 0; break; } return size; } SparseMatrix SparseMatrix_sort(SparseMatrix A){ SparseMatrix B; B = SparseMatrix_transpose(A); SparseMatrix_delete(A); A = SparseMatrix_transpose(B); SparseMatrix_delete(B); return A; } SparseMatrix SparseMatrix_make_undirected(SparseMatrix A){ /* make it strictly low diag only, and set flag to undirected */ SparseMatrix B; B = SparseMatrix_symmetrize(A, false); B->is_undirected = true; return SparseMatrix_remove_upper(B); } SparseMatrix SparseMatrix_transpose(SparseMatrix A){ if (!A) return NULL; int *ia = A->ia, *ja = A->ja, *ib, *jb, nz = A->nz, m = A->m, n = A->n, type = A->type, format = A->format; SparseMatrix B; int i, j; assert(A->format == FORMAT_CSR);/* only implemented for CSR right now */ B = SparseMatrix_new(n, m, nz, type, format); B->nz = nz; ib = B->ia; jb = B->ja; for (i = 0; i <= n; i++) ib[i] = 0; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ ib[ja[j]+1]++; } } for (i = 0; i < n; i++) ib[i+1] += ib[i]; switch (A->type){ case MATRIX_TYPE_REAL:{ double *a = A->a; double *b = B->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jb[ib[ja[j]]] = i; b[ib[ja[j]]++] = a[j]; } } break; } case MATRIX_TYPE_COMPLEX:{ double *a = A->a; double *b = B->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jb[ib[ja[j]]] = i; b[2*ib[ja[j]]] = a[2*j]; b[2*ib[ja[j]]+1] = a[2*j+1]; ib[ja[j]]++; } } break; } case MATRIX_TYPE_INTEGER:{ int *ai = A->a; int *bi = B->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jb[ib[ja[j]]] = i; bi[ib[ja[j]]++] = ai[j]; } } break; } case MATRIX_TYPE_PATTERN: for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jb[ib[ja[j]]++] = i; } } break; case MATRIX_TYPE_UNKNOWN: SparseMatrix_delete(B); return NULL; default: SparseMatrix_delete(B); return NULL; } for (i = n-1; i >= 0; i--) ib[i+1] = ib[i]; ib[0] = 0; return B; } SparseMatrix SparseMatrix_symmetrize(SparseMatrix A, bool pattern_symmetric_only) { SparseMatrix B; if (SparseMatrix_is_symmetric(A, pattern_symmetric_only)) return SparseMatrix_copy(A); B = SparseMatrix_transpose(A); if (!B) return NULL; A = SparseMatrix_add(A, B); SparseMatrix_delete(B); A->is_symmetric = true; A->is_pattern_symmetric = true; return A; } bool SparseMatrix_is_symmetric(SparseMatrix A, bool test_pattern_symmetry_only) { if (!A) return false; /* assume no repeated entries! */ SparseMatrix B; int *ia, *ja, *ib, *jb, type, m; int *mask; bool res = false; int i, j; assert(A->format == FORMAT_CSR);/* only implemented for CSR right now */ if (A->is_symmetric) return true; if (test_pattern_symmetry_only && A->is_pattern_symmetric) return true; if (A->m != A->n) return false; B = SparseMatrix_transpose(A); if (!B) return false; ia = A->ia; ja = A->ja; ib = B->ia; jb = B->ja; m = A->m; mask = gv_calloc((size_t)m, sizeof(int)); for (i = 0; i < m; i++) mask[i] = -1; type = A->type; if (test_pattern_symmetry_only) type = MATRIX_TYPE_PATTERN; switch (type){ case MATRIX_TYPE_REAL:{ double *a = A->a; double *b = B->a; for (i = 0; i <= m; i++) if (ia[i] != ib[i]) goto RETURN; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ mask[ja[j]] = j; } for (j = ib[i]; j < ib[i+1]; j++){ if (mask[jb[j]] < ia[i]) goto RETURN; } for (j = ib[i]; j < ib[i+1]; j++){ if (fabs(b[j] - a[mask[jb[j]]]) > SYMMETRY_EPSILON) goto RETURN; } } res = true; break; } case MATRIX_TYPE_COMPLEX:{ double *a = A->a; double *b = B->a; for (i = 0; i <= m; i++) if (ia[i] != ib[i]) goto RETURN; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ mask[ja[j]] = j; } for (j = ib[i]; j < ib[i+1]; j++){ if (mask[jb[j]] < ia[i]) goto RETURN; } for (j = ib[i]; j < ib[i+1]; j++){ if (fabs(b[2*j] - a[2*mask[jb[j]]]) > SYMMETRY_EPSILON) goto RETURN; if (fabs(b[2*j+1] - a[2*mask[jb[j]]+1]) > SYMMETRY_EPSILON) goto RETURN; } } res = true; break; } case MATRIX_TYPE_INTEGER:{ int *ai = A->a; int *bi = B->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ mask[ja[j]] = j; } for (j = ib[i]; j < ib[i+1]; j++){ if (mask[jb[j]] < ia[i]) goto RETURN; } for (j = ib[i]; j < ib[i+1]; j++){ if (bi[j] != ai[mask[jb[j]]]) goto RETURN; } } res = true; break; } case MATRIX_TYPE_PATTERN: for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ mask[ja[j]] = j; } for (j = ib[i]; j < ib[i+1]; j++){ if (mask[jb[j]] < ia[i]) goto RETURN; } } res = true; break; case MATRIX_TYPE_UNKNOWN: goto RETURN; break; default: goto RETURN; break; } if (!test_pattern_symmetry_only) { A->is_symmetric = true; } A->is_pattern_symmetric = true; RETURN: free(mask); SparseMatrix_delete(B); return res; } static SparseMatrix SparseMatrix_init(int m, int n, int type, size_t sz, int format){ SparseMatrix A = gv_alloc(sizeof(struct SparseMatrix_struct)); A->m = m; A->n = n; A->nz = 0; A->nzmax = 0; A->type = type; A->size = sz; switch (format){ case FORMAT_COORD: A->ia = NULL; break; case FORMAT_CSR: default: A->ia = gv_calloc((size_t)(m + 1), sizeof(int)); } A->ja = NULL; A->a = NULL; A->format = format; return A; } static SparseMatrix SparseMatrix_alloc(SparseMatrix A, int nz){ int format = A->format; size_t nz_t = (size_t) nz; /* size_t is 64 bit on 64 bit machine. Using nz*A->size can overflow. */ A->a = NULL; switch (format){ case FORMAT_COORD: A->ia = gv_calloc(nz_t, sizeof(int)); A->ja = gv_calloc(nz_t, sizeof(int)); A->a = gv_calloc(nz_t, A->size); break; case FORMAT_CSR: default: A->ja = gv_calloc(nz_t, sizeof(int)); if (A->size > 0 && nz_t > 0) { A->a = gv_calloc(nz_t, A->size); } break; } A->nzmax = nz; return A; } static SparseMatrix SparseMatrix_realloc(SparseMatrix A, int nz){ int format = A->format; size_t nz_t = (size_t) nz; /* size_t is 64 bit on 64 bit machine. Using nz*A->size can overflow. */ switch (format){ case FORMAT_COORD: A->ia = gv_recalloc(A->ia, A->nzmax, nz_t, sizeof(int)); A->ja = gv_recalloc(A->ja, A->nzmax, nz_t, sizeof(int)); if (A->size > 0) { if (A->a){ A->a = gv_recalloc(A->a, A->nzmax, nz_t, A->size); } else { A->a = gv_calloc(nz_t, A->size); } } break; case FORMAT_CSR: default: A->ja = gv_recalloc(A->ja, A->nzmax, nz_t, sizeof(int)); if (A->size > 0) { if (A->a){ A->a = gv_recalloc(A->a, A->nzmax, nz_t, A->size); } else { A->a = gv_calloc(nz_t, A->size); } } break; } A->nzmax = nz; return A; } SparseMatrix SparseMatrix_new(int m, int n, int nz, int type, int format){ /* return a sparse matrix skeleton with row dimension m and storage nz. If nz == 0, only row pointers are allocated */ SparseMatrix A; size_t sz; sz = size_of_matrix_type(type); A = SparseMatrix_init(m, n, type, sz, format); if (nz > 0) A = SparseMatrix_alloc(A, nz); return A; } SparseMatrix SparseMatrix_general_new(int m, int n, int nz, int type, size_t sz, int format){ /* return a sparse matrix skeleton with row dimension m and storage nz. If nz == 0, only row pointers are allocated. this is more general and allow elements to be any data structure, not just real/int/complex etc */ SparseMatrix A; A = SparseMatrix_init(m, n, type, sz, format); if (nz > 0) A = SparseMatrix_alloc(A, nz); return A; } void SparseMatrix_delete(SparseMatrix A){ if (!A) return; free(A->ia); free(A->ja); free(A->a); free(A); } static void SparseMatrix_export_csr(FILE *f, SparseMatrix A){ int *ia, *ja; double *a; int *ai; int i, j, m = A->m; switch (A->type){ case MATRIX_TYPE_REAL: fprintf(f,"%%%%MatrixMarket matrix coordinate real general\n"); break; case MATRIX_TYPE_COMPLEX: fprintf(f,"%%%%MatrixMarket matrix coordinate complex general\n"); break; case MATRIX_TYPE_INTEGER: fprintf(f,"%%%%MatrixMarket matrix coordinate integer general\n"); break; case MATRIX_TYPE_PATTERN: fprintf(f,"%%%%MatrixMarket matrix coordinate pattern general\n"); break; case MATRIX_TYPE_UNKNOWN: return; default: return; } fprintf(f,"%d %d %d\n",A->m,A->n,A->nz); ia = A->ia; ja = A->ja; a = A->a; switch (A->type){ case MATRIX_TYPE_REAL: a = A->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ fprintf(f, "%d %d %16.8g\n",i+1, ja[j]+1, a[j]); } } break; case MATRIX_TYPE_COMPLEX: a = A->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ fprintf(f, "%d %d %16.8g %16.8g\n",i+1, ja[j]+1, a[2*j], a[2*j+1]); } } break; case MATRIX_TYPE_INTEGER: ai = A->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ fprintf(f, "%d %d %d\n",i+1, ja[j]+1, ai[j]); } } break; case MATRIX_TYPE_PATTERN: for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ fprintf(f, "%d %d\n",i+1, ja[j]+1); } } break; case MATRIX_TYPE_UNKNOWN: return; default: return; } } static void SparseMatrix_export_coord(FILE *f, SparseMatrix A){ int *ia, *ja; double *a; int *ai; int i; switch (A->type){ case MATRIX_TYPE_REAL: fprintf(f,"%%%%MatrixMarket matrix coordinate real general\n"); break; case MATRIX_TYPE_COMPLEX: fprintf(f,"%%%%MatrixMarket matrix coordinate complex general\n"); break; case MATRIX_TYPE_INTEGER: fprintf(f,"%%%%MatrixMarket matrix coordinate integer general\n"); break; case MATRIX_TYPE_PATTERN: fprintf(f,"%%%%MatrixMarket matrix coordinate pattern general\n"); break; case MATRIX_TYPE_UNKNOWN: return; default: return; } fprintf(f,"%d %d %d\n",A->m,A->n,A->nz); ia = A->ia; ja = A->ja; a = A->a; switch (A->type){ case MATRIX_TYPE_REAL: a = A->a; for (i = 0; i < A->nz; i++){ fprintf(f, "%d %d %16.8g\n",ia[i]+1, ja[i]+1, a[i]); } break; case MATRIX_TYPE_COMPLEX: a = A->a; for (i = 0; i < A->nz; i++){ fprintf(f, "%d %d %16.8g %16.8g\n",ia[i]+1, ja[i]+1, a[2*i], a[2*i+1]); } break; case MATRIX_TYPE_INTEGER: ai = A->a; for (i = 0; i < A->nz; i++){ fprintf(f, "%d %d %d\n",ia[i]+1, ja[i]+1, ai[i]); } break; case MATRIX_TYPE_PATTERN: for (i = 0; i < A->nz; i++){ fprintf(f, "%d %d\n",ia[i]+1, ja[i]+1); } break; case MATRIX_TYPE_UNKNOWN: return; default: return; } } void SparseMatrix_export(FILE *f, SparseMatrix A){ switch (A->format){ case FORMAT_CSR: SparseMatrix_export_csr(f, A); break; case FORMAT_COORD: SparseMatrix_export_coord(f, A); break; default: assert(0); } } SparseMatrix SparseMatrix_from_coordinate_format(SparseMatrix A){ /* convert a sparse matrix in coordinate form to one in compressed row form.*/ int *irn, *jcn; void *a = A->a; assert(A->format == FORMAT_COORD); if (A->format != FORMAT_COORD) { return NULL; } irn = A->ia; jcn = A->ja; return SparseMatrix_from_coordinate_arrays(A->nz, A->m, A->n, irn, jcn, a, A->type, A->size); } SparseMatrix SparseMatrix_from_coordinate_format_not_compacted(SparseMatrix A){ /* convert a sparse matrix in coordinate form to one in compressed row form.*/ int *irn, *jcn; void *a = A->a; assert(A->format == FORMAT_COORD); if (A->format != FORMAT_COORD) { return NULL; } irn = A->ia; jcn = A->ja; return SparseMatrix_from_coordinate_arrays_not_compacted(A->nz, A->m, A->n, irn, jcn, a, A->type, A->size); } static SparseMatrix SparseMatrix_from_coordinate_arrays_internal(int nz, int m, int n, int *irn, int *jcn, void *val0, int type, size_t sz, int sum_repeated){ /* convert a sparse matrix in coordinate form to one in compressed row form. nz: number of entries irn: row indices 0-based jcn: column indices 0-based val values if not NULL type: matrix type */ SparseMatrix A = NULL; int *ia, *ja; double *a, *val; int *ai, *vali; int i; assert(m > 0 && n > 0 && nz >= 0); if (m <=0 || n <= 0 || nz < 0) return NULL; A = SparseMatrix_general_new(m, n, nz, type, sz, FORMAT_CSR); assert(A); if (!A) return NULL; ia = A->ia; ja = A->ja; for (i = 0; i <= m; i++){ ia[i] = 0; } switch (type){ case MATRIX_TYPE_REAL: val = val0; a = A->a; for (i = 0; i < nz; i++){ if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { assert(0); return NULL; } ia[irn[i]+1]++; } for (i = 0; i < m; i++) ia[i+1] += ia[i]; for (i = 0; i < nz; i++){ a[ia[irn[i]]] = val[i]; ja[ia[irn[i]]++] = jcn[i]; } for (i = m; i > 0; i--) ia[i] = ia[i - 1]; ia[0] = 0; break; case MATRIX_TYPE_COMPLEX: val = val0; a = A->a; for (i = 0; i < nz; i++){ if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { assert(0); return NULL; } ia[irn[i]+1]++; } for (i = 0; i < m; i++) ia[i+1] += ia[i]; for (i = 0; i < nz; i++){ a[2*ia[irn[i]]] = *(val++); a[2*ia[irn[i]]+1] = *(val++); ja[ia[irn[i]]++] = jcn[i]; } for (i = m; i > 0; i--) ia[i] = ia[i - 1]; ia[0] = 0; break; case MATRIX_TYPE_INTEGER: vali = val0; ai = A->a; for (i = 0; i < nz; i++){ if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { assert(0); return NULL; } ia[irn[i]+1]++; } for (i = 0; i < m; i++) ia[i+1] += ia[i]; for (i = 0; i < nz; i++){ ai[ia[irn[i]]] = vali[i]; ja[ia[irn[i]]++] = jcn[i]; } for (i = m; i > 0; i--) ia[i] = ia[i - 1]; ia[0] = 0; break; case MATRIX_TYPE_PATTERN: for (i = 0; i < nz; i++){ if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { assert(0); return NULL; } ia[irn[i]+1]++; } for (i = 0; i < m; i++) ia[i+1] += ia[i]; for (i = 0; i < nz; i++){ ja[ia[irn[i]]++] = jcn[i]; } for (i = m; i > 0; i--) ia[i] = ia[i - 1]; ia[0] = 0; break; case MATRIX_TYPE_UNKNOWN: for (i = 0; i < nz; i++){ if (irn[i] < 0 || irn[i] >= m || jcn[i] < 0 || jcn[i] >= n) { assert(0); return NULL; } ia[irn[i]+1]++; } for (i = 0; i < m; i++) ia[i+1] += ia[i]; memcpy(A->a, val0, A->size*((size_t)nz)); for (i = 0; i < nz; i++){ ja[ia[irn[i]]++] = jcn[i]; } for (i = m; i > 0; i--) ia[i] = ia[i - 1]; ia[0] = 0; break; default: assert(0); return NULL; } A->nz = nz; if(sum_repeated) A = SparseMatrix_sum_repeat_entries(A); return A; } SparseMatrix SparseMatrix_from_coordinate_arrays(int nz, int m, int n, int *irn, int *jcn, void *val0, int type, size_t sz){ return SparseMatrix_from_coordinate_arrays_internal(nz, m, n, irn, jcn, val0, type, sz, SUM_REPEATED_ALL); } SparseMatrix SparseMatrix_from_coordinate_arrays_not_compacted(int nz, int m, int n, int *irn, int *jcn, void *val0, int type, size_t sz){ return SparseMatrix_from_coordinate_arrays_internal(nz, m, n, irn, jcn, val0, type, sz, SUM_REPEATED_NONE); } SparseMatrix SparseMatrix_add(SparseMatrix A, SparseMatrix B){ int m, n; SparseMatrix C = NULL; int *mask = NULL; int *ia = A->ia, *ja = A->ja, *ib = B->ia, *jb = B->ja, *ic, *jc; int i, j, nz, nzmax; assert(A && B); assert(A->format == B->format && A->format == FORMAT_CSR);/* other format not yet supported */ assert(A->type == B->type); m = A->m; n = A->n; if (m != B->m || n != B->n) return NULL; nzmax = A->nz + B->nz;/* just assume that no entries overlaps for speed */ C = SparseMatrix_new(m, n, nzmax, A->type, FORMAT_CSR); if (!C) goto RETURN; ic = C->ia; jc = C->ja; mask = gv_calloc((size_t)n, sizeof(int)); for (i = 0; i < n; i++) mask[i] = -1; nz = 0; ic[0] = 0; switch (A->type){ case MATRIX_TYPE_REAL:{ double *a = A->a; double *b = B->a; double *c = C->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ mask[ja[j]] = nz; jc[nz] = ja[j]; c[nz] = a[j]; nz++; } for (j = ib[i]; j < ib[i+1]; j++){ if (mask[jb[j]] < ic[i]){ jc[nz] = jb[j]; c[nz++] = b[j]; } else { c[mask[jb[j]]] += b[j]; } } ic[i+1] = nz; } break; } case MATRIX_TYPE_COMPLEX:{ double *a = A->a; double *b = B->a; double *c = C->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ mask[ja[j]] = nz; jc[nz] = ja[j]; c[2*nz] = a[2*j]; c[2*nz+1] = a[2*j+1]; nz++; } for (j = ib[i]; j < ib[i+1]; j++){ if (mask[jb[j]] < ic[i]){ jc[nz] = jb[j]; c[2*nz] = b[2*j]; c[2*nz+1] = b[2*j+1]; nz++; } else { c[2*mask[jb[j]]] += b[2*j]; c[2*mask[jb[j]]+1] += b[2*j+1]; } } ic[i+1] = nz; } break; } case MATRIX_TYPE_INTEGER:{ int *a = A->a; int *b = B->a; int *c = C->a; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ mask[ja[j]] = nz; jc[nz] = ja[j]; c[nz] = a[j]; nz++; } for (j = ib[i]; j < ib[i+1]; j++){ if (mask[jb[j]] < ic[i]){ jc[nz] = jb[j]; c[nz] = b[j]; nz++; } else { c[mask[jb[j]]] += b[j]; } } ic[i+1] = nz; } break; } case MATRIX_TYPE_PATTERN:{ for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ mask[ja[j]] = nz; jc[nz] = ja[j]; nz++; } for (j = ib[i]; j < ib[i+1]; j++){ if (mask[jb[j]] < ic[i]){ jc[nz] = jb[j]; nz++; } } ic[i+1] = nz; } break; } case MATRIX_TYPE_UNKNOWN: break; default: break; } C->nz = nz; RETURN: free(mask); return C; } void SparseMatrix_multiply_dense(SparseMatrix A, const double *v, double *res, int dim) { // A × V, with A dimension m × n, with V a dense matrix of dimension n × dim. // v[i×dim×j] gives V[i,j]. Result of dimension m × dim. Real only for now. int i, j, k, *ia, *ja, m; double *a; assert(A->format == FORMAT_CSR); assert(A->type == MATRIX_TYPE_REAL); a = A->a; ia = A->ia; ja = A->ja; m = A->m; for (i = 0; i < m; i++){ for (k = 0; k < dim; k++) res[i * dim + k] = 0; for (j = ia[i]; j < ia[i+1]; j++){ for (k = 0; k < dim; k++) res[i * dim + k] += a[j] * v[ja[j] *dim + k]; } } } void SparseMatrix_multiply_vector(SparseMatrix A, double *v, double **res) { /* A v or A^T v. Real only for now. */ int i, j, *ia, *ja, m; double *a, *u = NULL; int *ai; assert(A->format == FORMAT_CSR); assert(A->type == MATRIX_TYPE_REAL || A->type == MATRIX_TYPE_INTEGER); ia = A->ia; ja = A->ja; m = A->m; u = *res; switch (A->type){ case MATRIX_TYPE_REAL: a = A->a; if (v){ if (!u) u = gv_calloc((size_t)m, sizeof(double)); for (i = 0; i < m; i++){ u[i] = 0.; for (j = ia[i]; j < ia[i+1]; j++){ u[i] += a[j]*v[ja[j]]; } } } else { /* v is assumed to be all 1's */ if (!u) u = gv_calloc((size_t)m, sizeof(double)); for (i = 0; i < m; i++){ u[i] = 0.; for (j = ia[i]; j < ia[i+1]; j++){ u[i] += a[j]; } } } break; case MATRIX_TYPE_INTEGER: ai = A->a; if (v){ if (!u) u = gv_calloc((size_t)m, sizeof(double)); for (i = 0; i < m; i++){ u[i] = 0.; for (j = ia[i]; j < ia[i+1]; j++){ u[i] += ai[j]*v[ja[j]]; } } } else { /* v is assumed to be all 1's */ if (!u) u = gv_calloc((size_t)m, sizeof(double)); for (i = 0; i < m; i++){ u[i] = 0.; for (j = ia[i]; j < ia[i+1]; j++){ u[i] += ai[j]; } } } break; default: assert(0); u = NULL; } *res = u; } SparseMatrix SparseMatrix_multiply(SparseMatrix A, SparseMatrix B){ int m; SparseMatrix C = NULL; int *mask = NULL; int *ia = A->ia, *ja = A->ja, *ib = B->ia, *jb = B->ja, *ic, *jc; int i, j, k, jj, type, nz; assert(A->format == B->format && A->format == FORMAT_CSR);/* other format not yet supported */ m = A->m; if (A->n != B->m) return NULL; if (A->type != B->type){ #ifdef DEBUG printf("in SparseMatrix_multiply, the matrix types do not match, right now only multiplication of matrices of the same type is supported\n"); #endif return NULL; } type = A->type; mask = calloc((size_t)B->n, sizeof(int)); if (!mask) return NULL; for (i = 0; i < B->n; i++) mask[i] = -1; nz = 0; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jj = ja[j]; for (k = ib[jj]; k < ib[jj+1]; k++){ if (mask[jb[k]] != -i - 2){ if ((nz+1) <= nz) { #ifdef DEBUG_PRINT fprintf(stderr,"overflow in SparseMatrix_multiply !!!\n"); #endif free(mask); return NULL; } nz++; mask[jb[k]] = -i - 2; } } } } C = SparseMatrix_new(m, B->n, nz, type, FORMAT_CSR); if (!C) goto RETURN; ic = C->ia; jc = C->ja; nz = 0; switch (type){ case MATRIX_TYPE_REAL: { double *a = A->a; double *b = B->a; double *c = C->a; ic[0] = 0; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jj = ja[j]; for (k = ib[jj]; k < ib[jj+1]; k++){ if (mask[jb[k]] < ic[i]){ mask[jb[k]] = nz; jc[nz] = jb[k]; c[nz] = a[j]*b[k]; nz++; } else { assert(jc[mask[jb[k]]] == jb[k]); c[mask[jb[k]]] += a[j]*b[k]; } } } ic[i+1] = nz; } } break; case MATRIX_TYPE_COMPLEX: { double *a = A->a; double *b = B->a; double *c = C->a; ic[0] = 0; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jj = ja[j]; for (k = ib[jj]; k < ib[jj+1]; k++){ if (mask[jb[k]] < ic[i]){ mask[jb[k]] = nz; jc[nz] = jb[k]; c[2*nz] = a[2*j]*b[2*k] - a[2*j+1]*b[2*k+1];/*real part */ c[2*nz+1] = a[2*j]*b[2*k+1] + a[2*j+1]*b[2*k];/*img part */ nz++; } else { assert(jc[mask[jb[k]]] == jb[k]); c[2*mask[jb[k]]] += a[2*j]*b[2*k] - a[2*j+1]*b[2*k+1];/*real part */ c[2*mask[jb[k]]+1] += a[2*j]*b[2*k+1] + a[2*j+1]*b[2*k];/*img part */ } } } ic[i+1] = nz; } } break; case MATRIX_TYPE_INTEGER: { int *a = A->a; int *b = B->a; int *c = C->a; ic[0] = 0; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jj = ja[j]; for (k = ib[jj]; k < ib[jj+1]; k++){ if (mask[jb[k]] < ic[i]){ mask[jb[k]] = nz; jc[nz] = jb[k]; c[nz] = a[j]*b[k]; nz++; } else { assert(jc[mask[jb[k]]] == jb[k]); c[mask[jb[k]]] += a[j]*b[k]; } } } ic[i+1] = nz; } } break; case MATRIX_TYPE_PATTERN: ic[0] = 0; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jj = ja[j]; for (k = ib[jj]; k < ib[jj+1]; k++){ if (mask[jb[k]] < ic[i]){ mask[jb[k]] = nz; jc[nz] = jb[k]; nz++; } else { assert(jc[mask[jb[k]]] == jb[k]); } } } ic[i+1] = nz; } break; case MATRIX_TYPE_UNKNOWN: default: SparseMatrix_delete(C); C = NULL; goto RETURN; break; } C->nz = nz; RETURN: free(mask); return C; } SparseMatrix SparseMatrix_multiply3(SparseMatrix A, SparseMatrix B, SparseMatrix C){ int m; SparseMatrix D = NULL; int *mask = NULL; int *ia = A->ia, *ja = A->ja, *ib = B->ia, *jb = B->ja, *ic = C->ia, *jc = C->ja, *id, *jd; int i, j, k, l, ll, jj, type, nz; assert(A->format == B->format && A->format == FORMAT_CSR);/* other format not yet supported */ m = A->m; if (A->n != B->m) return NULL; if (B->n != C->m) return NULL; if (A->type != B->type || B->type != C->type){ #ifdef DEBUG printf("in SparseMatrix_multiply, the matrix types do not match, right now only multiplication of matrices of the same type is supported\n"); #endif return NULL; } type = A->type; assert(type == MATRIX_TYPE_REAL); mask = calloc((size_t)C->n, sizeof(int)); if (!mask) return NULL; for (i = 0; i < C->n; i++) mask[i] = -1; nz = 0; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jj = ja[j]; for (l = ib[jj]; l < ib[jj+1]; l++){ ll = jb[l]; for (k = ic[ll]; k < ic[ll+1]; k++){ if (mask[jc[k]] != -i - 2){ if ((nz+1) <= nz) { #ifdef DEBUG_PRINT fprintf(stderr,"overflow in SparseMatrix_multiply !!!\n"); #endif return NULL; } nz++; mask[jc[k]] = -i - 2; } } } } } D = SparseMatrix_new(m, C->n, nz, type, FORMAT_CSR); if (!D) goto RETURN; id = D->ia; jd = D->ja; nz = 0; double *a = A->a; double *b = B->a; double *c = C->a; double *d = D->a; id[0] = 0; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ jj = ja[j]; for (l = ib[jj]; l < ib[jj+1]; l++){ ll = jb[l]; for (k = ic[ll]; k < ic[ll+1]; k++){ if (mask[jc[k]] < id[i]){ mask[jc[k]] = nz; jd[nz] = jc[k]; d[nz] = a[j]*b[l]*c[k]; nz++; } else { assert(jd[mask[jc[k]]] == jc[k]); d[mask[jc[k]]] += a[j]*b[l]*c[k]; } } } } id[i+1] = nz; } D->nz = nz; RETURN: free(mask); return D; } SparseMatrix SparseMatrix_sum_repeat_entries(SparseMatrix A){ /* sum repeated entries in the same row, i.e., {1,1}->1, {1,1}->2 becomes {1,1}->3 */ int *ia = A->ia, *ja = A->ja, type = A->type, n = A->n; int *mask = NULL, nz = 0, i, j, sta; mask = gv_calloc((size_t)n, sizeof(int)); for (i = 0; i < n; i++) mask[i] = -1; switch (type){ case MATRIX_TYPE_REAL: { double *a = A->a; nz = 0; sta = ia[0]; for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (mask[ja[j]] < ia[i]){ ja[nz] = ja[j]; a[nz] = a[j]; mask[ja[j]] = nz++; } else { assert(ja[mask[ja[j]]] == ja[j]); a[mask[ja[j]]] += a[j]; } } sta = ia[i+1]; ia[i+1] = nz; } } break; case MATRIX_TYPE_COMPLEX: { double *a = A->a; nz = 0; sta = ia[0]; for (i = 0; i < A->m; i++) { for (j = sta; j < ia[i+1]; j++) { if (mask[ja[j]] < ia[i]) { ja[nz] = ja[j]; a[2 * nz] = a[2 * j]; a[2 * nz + 1] = a[2 * j + 1]; mask[ja[j]] = nz++; } else { assert(ja[mask[ja[j]]] == ja[j]); a[2 * mask[ja[j]]] += a[2 * j]; a[2 * mask[ja[j]]+1] += a[2 * j + 1]; } } sta = ia[i + 1]; ia[i + 1] = nz; } } break; case MATRIX_TYPE_INTEGER: { int *a = A->a; nz = 0; sta = ia[0]; for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (mask[ja[j]] < ia[i]){ ja[nz] = ja[j]; a[nz] = a[j]; mask[ja[j]] = nz++; } else { assert(ja[mask[ja[j]]] == ja[j]); a[mask[ja[j]]] += a[j]; } } sta = ia[i+1]; ia[i+1] = nz; } } break; case MATRIX_TYPE_PATTERN: { nz = 0; sta = ia[0]; for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (mask[ja[j]] < ia[i]){ ja[nz] = ja[j]; mask[ja[j]] = nz++; } else { assert(ja[mask[ja[j]]] == ja[j]); } } sta = ia[i+1]; ia[i+1] = nz; } } break; default: free(mask); return NULL; } A->nz = nz; free(mask); return A; } SparseMatrix SparseMatrix_coordinate_form_add_entry(SparseMatrix A, int irn, int jcn, const void *val) { int nz, nzmax; static const int nentries = 1; assert(A->format == FORMAT_COORD); nz = A->nz; if (nz + nentries >= A->nzmax){ nzmax = nz + nentries; nzmax += 10; A = SparseMatrix_realloc(A, nzmax); } A->ia[nz] = irn; A->ja[nz] = jcn; if (A->size) memcpy((char*) A->a + ((size_t)nz)*A->size/sizeof(char), val, A->size*((size_t)nentries)); if (irn >= A->m) A->m = irn + 1; if (jcn >= A->n) A->n = jcn + 1; A->nz += nentries; return A; } SparseMatrix SparseMatrix_remove_diagonal(SparseMatrix A){ int i, j, *ia, *ja, nz, sta; if (!A) return A; nz = 0; ia = A->ia; ja = A->ja; sta = ia[0]; switch (A->type){ case MATRIX_TYPE_REAL:{ double *a = A->a; for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (ja[j] != i){ ja[nz] = ja[j]; a[nz++] = a[j]; } } sta = ia[i+1]; ia[i+1] = nz; } A->nz = nz; break; } case MATRIX_TYPE_COMPLEX:{ double *a = A->a; for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (ja[j] != i){ ja[nz] = ja[j]; a[2*nz] = a[2*j]; a[2*nz+1] = a[2*j+1]; nz++; } } sta = ia[i+1]; ia[i+1] = nz; } A->nz = nz; break; } case MATRIX_TYPE_INTEGER:{ int *a = A->a; for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (ja[j] != i){ ja[nz] = ja[j]; a[nz++] = a[j]; } } sta = ia[i+1]; ia[i+1] = nz; } A->nz = nz; break; } case MATRIX_TYPE_PATTERN:{ for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (ja[j] != i){ ja[nz++] = ja[j]; } } sta = ia[i+1]; ia[i+1] = nz; } A->nz = nz; break; } case MATRIX_TYPE_UNKNOWN: return NULL; default: return NULL; } return A; } SparseMatrix SparseMatrix_remove_upper(SparseMatrix A){/* remove diag and upper diag */ int i, j, *ia, *ja, nz, sta; if (!A) return A; nz = 0; ia = A->ia; ja = A->ja; sta = ia[0]; switch (A->type){ case MATRIX_TYPE_REAL:{ double *a = A->a; for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (ja[j] < i){ ja[nz] = ja[j]; a[nz++] = a[j]; } } sta = ia[i+1]; ia[i+1] = nz; } A->nz = nz; break; } case MATRIX_TYPE_COMPLEX:{ double *a = A->a; for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (ja[j] < i){ ja[nz] = ja[j]; a[2*nz] = a[2*j]; a[2*nz+1] = a[2*j+1]; nz++; } } sta = ia[i+1]; ia[i+1] = nz; } A->nz = nz; break; } case MATRIX_TYPE_INTEGER:{ int *a = A->a; for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (ja[j] < i){ ja[nz] = ja[j]; a[nz++] = a[j]; } } sta = ia[i+1]; ia[i+1] = nz; } A->nz = nz; break; } case MATRIX_TYPE_PATTERN:{ for (i = 0; i < A->m; i++){ for (j = sta; j < ia[i+1]; j++){ if (ja[j] < i){ ja[nz++] = ja[j]; } } sta = ia[i+1]; ia[i+1] = nz; } A->nz = nz; break; } case MATRIX_TYPE_UNKNOWN: return NULL; default: return NULL; } A->is_pattern_symmetric = false; A->is_symmetric = false; return A; } SparseMatrix SparseMatrix_divide_row_by_degree(SparseMatrix A){ int i, j, *ia, *ja; double deg; if (!A) return A; ia = A->ia; ja = A->ja; switch (A->type){ case MATRIX_TYPE_REAL:{ double *a = A->a; for (i = 0; i < A->m; i++){ deg = ia[i+1] - ia[i]; for (j = ia[i]; j < ia[i+1]; j++){ a[j] = a[j]/deg; } } break; } case MATRIX_TYPE_COMPLEX:{ double *a = A->a; for (i = 0; i < A->m; i++){ deg = ia[i+1] - ia[i]; for (j = ia[i]; j < ia[i+1]; j++){ if (ja[j] != i){ a[2*j] = a[2*j]/deg; a[2*j+1] = a[2*j+1]/deg; } } } break; } case MATRIX_TYPE_INTEGER:{ assert(0);/* this operation would not make sense for int matrix */ break; } case MATRIX_TYPE_PATTERN:{ break; } case MATRIX_TYPE_UNKNOWN: return NULL; default: return NULL; } return A; } SparseMatrix SparseMatrix_get_real_adjacency_matrix_symmetrized(SparseMatrix A){ /* symmetric, all entries to 1, diaginal removed */ int i, *ia, *ja, nz, m, n; double *a; SparseMatrix B; if (!A) return A; nz = A->nz; ia = A->ia; ja = A->ja; n = A->n; m = A->m; if (n != m) return NULL; B = SparseMatrix_new(m, n, nz, MATRIX_TYPE_PATTERN, FORMAT_CSR); memcpy(B->ia, ia, sizeof(int)*((size_t)(m+1))); memcpy(B->ja, ja, sizeof(int)*((size_t)nz)); B->nz = A->nz; A = SparseMatrix_symmetrize(B, true); SparseMatrix_delete(B); A = SparseMatrix_remove_diagonal(A); A->a = gv_calloc((size_t)A->nz, sizeof(double)); a = A->a; for (i = 0; i < A->nz; i++) a[i] = 1.; A->type = MATRIX_TYPE_REAL; A->size = sizeof(double); return A; } SparseMatrix SparseMatrix_apply_fun(SparseMatrix A, double (*fun)(double x)){ int i, j; double *a; if (!A) return A; if (A->format != FORMAT_CSR && A->type != MATRIX_TYPE_REAL) { #ifdef DEBUG printf("only CSR and real matrix supported.\n"); #endif return A; } a = A->a; for (i = 0; i < A->m; i++){ for (j = A->ia[i]; j < A->ia[i+1]; j++){ a[j] = fun(a[j]); } } return A; } SparseMatrix SparseMatrix_copy(SparseMatrix A){ SparseMatrix B; if (!A) return A; B = SparseMatrix_general_new(A->m, A->n, A->nz, A->type, A->size, A->format); memcpy(B->ia, A->ia, sizeof(int)*((size_t)(A->m+1))); if (A->ia[A->m] != 0) { memcpy(B->ja, A->ja, sizeof(int)*((size_t)(A->ia[A->m]))); } if (A->a) memcpy(B->a, A->a, A->size*((size_t)A->nz)); B->is_pattern_symmetric = A->is_pattern_symmetric; B->is_symmetric = A->is_symmetric; B->is_undirected = A->is_undirected; B->nz = A->nz; return B; } bool SparseMatrix_has_diagonal(SparseMatrix A) { int i, j, m = A->m, *ia = A->ia, *ja = A->ja; for (i = 0; i < m; i++){ for (j = ia[i]; j < ia[i+1]; j++){ if (i == ja[j]) return true; } } return false; } static void SparseMatrix_level_sets(SparseMatrix A, int root, int *nlevel, int **levelset_ptr, int **levelset, int **mask, bool reinitialize_mask) { /* mask is assumed to be initialized to negative if provided. . On exit, mask = levels for visited nodes (1 for root, 2 for its neighbors, etc), . unless reinitialize_mask is true, in which case mask = -1. A: the graph, undirected root: starting node nlevel: max distance to root from any node (in the connected comp) levelset_ptr, levelset: the level sets */ int i, j, sta = 0, sto = 1, nz, ii; int m = A->m, *ia = A->ia, *ja = A->ja; if (!(*levelset_ptr)) *levelset_ptr = gv_calloc((size_t)(m + 2), sizeof(int)); if (!(*levelset)) *levelset = gv_calloc((size_t)m, sizeof(int)); if (!(*mask)) { *mask = gv_calloc((size_t)m, sizeof(int)); for (i = 0; i < m; i++) (*mask)[i] = UNMASKED; } *nlevel = 0; assert(root >= 0 && root < m); (*levelset_ptr)[0] = 0; (*levelset_ptr)[1] = 1; (*levelset)[0] = root; (*mask)[root] = 1; *nlevel = 1; nz = 1; sta = 0; sto = 1; while (sto > sta){ for (i = sta; i < sto; i++){ ii = (*levelset)[i]; for (j = ia[ii]; j < ia[ii+1]; j++){ if (ii == ja[j]) continue; if ((*mask)[ja[j]] < 0){ (*levelset)[nz++] = ja[j]; (*mask)[ja[j]] = *nlevel + 1; } } } (*levelset_ptr)[++(*nlevel)] = nz; sta = sto; sto = nz; } (*nlevel)--; if (reinitialize_mask) for (i = 0; i < (*levelset_ptr)[*nlevel]; i++) (*mask)[(*levelset)[i]] = UNMASKED; } int *SparseMatrix_weakly_connected_components(SparseMatrix A0, int *ncomp, int **comps) { SparseMatrix A = A0; int *levelset_ptr = NULL, *levelset = NULL, *mask = NULL, nlevel; int m = A->m, i, nn; if (!SparseMatrix_is_symmetric(A, true)){ A = SparseMatrix_symmetrize(A, true); } int *comps_ptr = gv_calloc((size_t)(m + 1), sizeof(int)); *ncomp = 0; comps_ptr[0] = 0; for (i = 0; i < m; i++){ if (i == 0 || mask[i] < 0) { SparseMatrix_level_sets(A, i, &nlevel, &levelset_ptr, &levelset, &mask, false); if (i == 0) *comps = levelset; nn = levelset_ptr[nlevel]; levelset += nn; comps_ptr[(*ncomp)+1] = comps_ptr[(*ncomp)] + nn; (*ncomp)++; } } if (A != A0) SparseMatrix_delete(A); free(levelset_ptr); free(mask); return comps_ptr; } void SparseMatrix_decompose_to_supervariables(SparseMatrix A, int *ncluster, int **cluster, int **clusterp){ /* nodes for a super variable if they share exactly the same neighbors. This is know as modules in graph theory. We work on columns only and columns with the same pattern are grouped as a super variable */ int *ia = A->ia, *ja = A->ja, n = A->n, m = A->m; int *super = NULL, *nsuper = NULL, i, j, *mask = NULL, isup, *newmap, isuper; super = gv_calloc((size_t)n, sizeof(int)); nsuper = gv_calloc((size_t)(n + 1), sizeof(int)); mask = gv_calloc((size_t)n, sizeof(int)); newmap = gv_calloc((size_t)n, sizeof(int)); nsuper++; isup = 0; for (i = 0; i < n; i++) super[i] = isup;/* every node belongs to super variable 0 by default */ nsuper[0] = n; for (i = 0; i < n; i++) mask[i] = -1; isup++; for (i = 0; i < m; i++){ #ifdef DEBUG_PRINT1 printf("\n"); printf("doing row %d-----\n",i+1); #endif for (j = ia[i]; j < ia[i+1]; j++){ isuper = super[ja[j]]; nsuper[isuper]--;/* those entries will move to a different super vars*/ } for (j = ia[i]; j < ia[i+1]; j++){ isuper = super[ja[j]]; if (mask[isuper] < i){ mask[isuper] = i; if (nsuper[isuper] == 0){/* all nodes in the isuper group exist in this row */ #ifdef DEBUG_PRINT1 printf("node %d keep super node id %d\n",ja[j]+1,isuper+1); #endif nsuper[isuper] = 1; newmap[isuper] = isuper; } else { newmap[isuper] = isup; nsuper[isup] = 1; #ifdef DEBUG_PRINT1 printf("make node %d into supernode %d\n",ja[j]+1,isup+1); #endif super[ja[j]] = isup++; } } else { #ifdef DEBUG_PRINT1 printf("node %d join super node %d\n",ja[j]+1,newmap[isuper]+1); #endif super[ja[j]] = newmap[isuper]; nsuper[newmap[isuper]]++; } } #ifdef DEBUG_PRINT1 printf("nsuper="); for (j = 0; j < isup; j++) printf("(%d,%d),",j+1,nsuper[j]); printf("\n"); #endif } #ifdef DEBUG_PRINT1 for (i = 0; i < n; i++){ printf("node %d is in supernode %d\n",i, super[i]); } #endif #ifdef PRINT fprintf(stderr, "n = %d, nsup = %d\n",n,isup); #endif /* now accumulate super nodes */ nsuper--; nsuper[0] = 0; for (i = 0; i < isup; i++) nsuper[i+1] += nsuper[i]; *cluster = newmap; for (i = 0; i < n; i++){ isuper = super[i]; (*cluster)[nsuper[isuper]++] = i; } for (i = isup; i > 0; i--) nsuper[i] = nsuper[i-1]; nsuper[0] = 0; *clusterp = nsuper; *ncluster = isup; #ifdef PRINT for (i = 0; i < *ncluster; i++){ printf("{"); for (j = (*clusterp)[i]; j < (*clusterp)[i+1]; j++){ printf("%d, ",(*cluster)[j]); } printf("},"); } printf("\n"); #endif free(mask); free(super); } SparseMatrix SparseMatrix_get_augmented(SparseMatrix A){ /* convert matrix A to an augmente dmatrix {{0,A},{A^T,0}} */ int *irn = NULL, *jcn = NULL; void *val = NULL; int nz = A->nz, type = A->type; int m = A->m, n = A->n, i, j; SparseMatrix B = NULL; if (!A) return NULL; if (nz > 0){ irn = gv_calloc((size_t)nz * 2, sizeof(int)); jcn = gv_calloc((size_t)nz * 2, sizeof(int)); } if (A->a){ assert(A->size != 0 && nz > 0); val = gv_calloc(2 * (size_t)nz, A->size); memcpy(val, A->a, A->size*((size_t)nz)); memcpy(((char*) val) + ((size_t)nz)*A->size, A->a, A->size*((size_t)nz)); } nz = 0; for (i = 0; i < m; i++){ for (j = (A->ia)[i]; j < (A->ia)[i+1]; j++){ irn[nz] = i; jcn[nz++] = (A->ja)[j] + m; } } for (i = 0; i < m; i++){ for (j = (A->ia)[i]; j < (A->ia)[i+1]; j++){ jcn[nz] = i; irn[nz++] = (A->ja)[j] + m; } } B = SparseMatrix_from_coordinate_arrays(nz, m + n, m + n, irn, jcn, val, type, A->size); B->is_symmetric = true; B->is_pattern_symmetric = true; free(irn); free(jcn); free(val); return B; } SparseMatrix SparseMatrix_to_square_matrix(SparseMatrix A, int bipartite_options){ SparseMatrix B; switch (bipartite_options){ case BIPARTITE_RECT: if (A->m == A->n) return A; break; case BIPARTITE_PATTERN_UNSYM: if (A->m == A->n && SparseMatrix_is_symmetric(A, true)) return A; break; case BIPARTITE_UNSYM: if (A->m == A->n && SparseMatrix_is_symmetric(A, false)) return A; break; case BIPARTITE_ALWAYS: break; default: assert(0); } B = SparseMatrix_get_augmented(A); SparseMatrix_delete(A); return B; } SparseMatrix SparseMatrix_get_submatrix(SparseMatrix A, int nrow, int ncol, int *rindices, int *cindices){ /* get the submatrix from row/columns indices[0,...,l-1]. row rindices[i] will be the new row i column cindices[i] will be the new column i. if rindices = NULL, it is assume that 1 -- nrow is needed. Same for cindices/ncol. */ int nz = 0, i, j, *irn, *jcn, *ia = A->ia, *ja = A->ja, m = A->m, n = A->n; int *cmask, *rmask; void *v = NULL; SparseMatrix B = NULL; int irow = 0, icol = 0; if (nrow <= 0 || ncol <= 0) return NULL; rmask = gv_calloc((size_t)m, sizeof(int)); cmask = gv_calloc((size_t)n, sizeof(int)); for (i = 0; i < m; i++) rmask[i] = -1; for (i = 0; i < n; i++) cmask[i] = -1; if (rindices){ for (i = 0; i < nrow; i++) { if (rindices[i] >= 0 && rindices[i] < m){ rmask[rindices[i]] = irow++; } } } else { for (i = 0; i < nrow; i++) { rmask[i] = irow++; } } if (cindices){ for (i = 0; i < ncol; i++) { if (cindices[i] >= 0 && cindices[i] < n){ cmask[cindices[i]] = icol++; } } } else { for (i = 0; i < ncol; i++) { cmask[i] = icol++; } } for (i = 0; i < m; i++){ if (rmask[i] < 0) continue; for (j = ia[i]; j < ia[i+1]; j++){ if (cmask[ja[j]] < 0) continue; nz++; } } switch (A->type){ case MATRIX_TYPE_REAL:{ double *a = A->a; double *val; irn = gv_calloc((size_t)nz, sizeof(int)); jcn = gv_calloc((size_t)nz, sizeof(int)); val = gv_calloc((size_t)nz, sizeof(double)); nz = 0; for (i = 0; i < m; i++){ if (rmask[i] < 0) continue; for (j = ia[i]; j < ia[i+1]; j++){ if (cmask[ja[j]] < 0) continue; irn[nz] = rmask[i]; jcn[nz] = cmask[ja[j]]; val[nz++] = a[j]; } } v = val; break; } case MATRIX_TYPE_COMPLEX:{ double *a = A->a; double *val; irn = gv_calloc((size_t)nz, sizeof(int)); jcn = gv_calloc((size_t)nz, sizeof(int)); val = gv_calloc(2 * (size_t)nz, sizeof(double)); nz = 0; for (i = 0; i < m; i++){ if (rmask[i] < 0) continue; for (j = ia[i]; j < ia[i+1]; j++){ if (cmask[ja[j]] < 0) continue; irn[nz] = rmask[i]; jcn[nz] = cmask[ja[j]]; val[2*nz] = a[2*j]; val[2*nz+1] = a[2*j+1]; nz++; } } v = val; break; } case MATRIX_TYPE_INTEGER:{ int *a = A->a; int *val; irn = gv_calloc((size_t)nz, sizeof(int)); jcn = gv_calloc((size_t)nz, sizeof(int)); val = gv_calloc((size_t)nz, sizeof(int)); nz = 0; for (i = 0; i < m; i++){ if (rmask[i] < 0) continue; for (j = ia[i]; j < ia[i+1]; j++){ if (cmask[ja[j]] < 0) continue; irn[nz] = rmask[i]; jcn[nz] = cmask[ja[j]]; val[nz] = a[j]; nz++; } } v = val; break; } case MATRIX_TYPE_PATTERN: irn = gv_calloc((size_t)nz, sizeof(int)); jcn = gv_calloc((size_t)nz, sizeof(int)); nz = 0; for (i = 0; i < m; i++){ if (rmask[i] < 0) continue; for (j = ia[i]; j < ia[i+1]; j++){ if (cmask[ja[j]] < 0) continue; irn[nz] = rmask[i]; jcn[nz++] = cmask[ja[j]]; } } break; case MATRIX_TYPE_UNKNOWN: free(rmask); free(cmask); return NULL; default: free(rmask); free(cmask); return NULL; } B = SparseMatrix_from_coordinate_arrays(nz, nrow, ncol, irn, jcn, v, A->type, A->size); free(cmask); free(rmask); free(irn); free(jcn); if (v) free(v); return B; } SparseMatrix SparseMatrix_set_entries_to_real_one(SparseMatrix A){ double *a; int i; free(A->a); A->a = gv_calloc((size_t)A->nz, sizeof(double)); a = A->a; for (i = 0; i < A->nz; i++) a[i] = 1.; A->type = MATRIX_TYPE_REAL; A->size = sizeof(double); return A; } SparseMatrix SparseMatrix_from_dense(int m, int n, double *x){ /* wrap a mxn matrix into a sparse matrix. the {i,j} entry of the matrix is in x[i*n+j], 0<=iia[0] = 0; for (i = 1; i <= m; i++) (A->ia)[i] = (A->ia)[i-1] + n; ja = A->ja; a = A->a; for (i = 0; i < m; i++){ for (j = 0; j < n; j++) { ja[j] = j; a[j] = x[i*n+j]; } ja += n; a += j; } A->nz = m*n; return A; } void SparseMatrix_distance_matrix(SparseMatrix D0, double **dist0) { /* Input: D: the graph. Entry values are unused. Output: dist: of dimension nxn, dist[i*n+j] gives the distance of node i to j. */ SparseMatrix D = D0; int m = D->m, n = D->n; int *levelset_ptr = NULL, *levelset = NULL, *mask = NULL; int i, j, k, nlevel; if (!SparseMatrix_is_symmetric(D, false)){ D = SparseMatrix_symmetrize(D, false); } assert(m == n); (void)m; if (!(*dist0)) *dist0 = gv_calloc(n * n, sizeof(double)); for (i = 0; i < n*n; i++) (*dist0)[i] = -1; for (k = 0; k < n; k++) { SparseMatrix_level_sets(D, k, &nlevel, &levelset_ptr, &levelset, &mask, true); assert(levelset_ptr[nlevel] == n); for (i = 0; i < nlevel; i++) { for (j = levelset_ptr[i]; j < levelset_ptr[i+1]; j++) { (*dist0)[k*n+levelset[j]] = i; } } } free(levelset_ptr); free(levelset); free(mask); if (D != D0) SparseMatrix_delete(D); }