/* libheif example application "heif". MIT License Copyright (c) 2024 Joachim Bauch Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include extern "C" { #include #include } #include "decoder_tiff.h" static struct heif_error heif_error_ok = {heif_error_Ok, heif_suberror_Unspecified, "Success"}; static bool seekTIFF(TIFF* tif, toff_t offset, int whence) { TIFFSeekProc seekProc = TIFFGetSeekProc(tif); if (!seekProc) { return false; } thandle_t handle = TIFFClientdata(tif); if (!handle) { return false; } return seekProc(handle, offset, whence) != static_cast(-1); } static bool readTIFF(TIFF* tif, void* dest, size_t size) { TIFFReadWriteProc readProc = TIFFGetReadProc(tif); if (!readProc) { return false; } thandle_t handle = TIFFClientdata(tif); if (!handle) { return false; } tmsize_t result = readProc(handle, dest, size); if (result < 0 || static_cast(result) != size) { return false; } return true; } static bool readTIFFUint16(TIFF* tif, uint16_t* dest) { if (!readTIFF(tif, &dest, 2)) { return false; } if (TIFFIsByteSwapped(tif)) { TIFFSwabShort(dest); } return true; } static bool readTIFFUint32(TIFF* tif, uint32_t* dest) { if (!readTIFF(tif, &dest, 4)) { return false; } if (TIFFIsByteSwapped(tif)) { TIFFSwabLong(dest); } return true; } class ExifTags { public: ~ExifTags() = default; void Encode(std::vector* dest); static std::unique_ptr Parse(TIFF* tif); private: class Tag { public: uint16_t tag; uint16_t type; uint32_t len; uint32_t offset; std::vector data; }; ExifTags(uint16_t count); void writeUint16(std::vector* dest, uint16_t value); void writeUint32(std::vector* dest, uint32_t value); void writeUint32(std::vector* dest, size_t pos, uint32_t value); void writeData(std::vector* dest, const std::vector& value); std::vector> tags_; }; ExifTags::ExifTags(uint16_t count) { tags_.reserve(count); } // static std::unique_ptr ExifTags::Parse(TIFF* tif) { toff_t exif_offset; if (!TIFFGetField(tif, TIFFTAG_EXIFIFD, &exif_offset)) { // Image doesn't contain EXIF data. return nullptr; } if (!seekTIFF(tif, exif_offset, SEEK_SET)) { return nullptr; } uint16_t count; if (!readTIFFUint16(tif, &count)) { return nullptr; } if (count == 0) { return nullptr; } std::unique_ptr tags(new ExifTags(count)); for (uint16_t i = 0; i < count; i++) { std::unique_ptr tag(new Tag()); if (!readTIFFUint16(tif, &tag->tag)) { return nullptr; } if (!readTIFFUint16(tif, &tag->type) || tag->type > TIFF_IFD8) { return nullptr; } if (TIFFDataWidth(static_cast(tag->type)) == 0) { return nullptr; } if (!readTIFFUint32(tif, &tag->len)) { return nullptr; } if (!readTIFFUint32(tif, &tag->offset)) { return nullptr; } tags->tags_.push_back(std::move(tag)); } for (const auto& tag : tags->tags_) { size_t size = tag->len * TIFFDataWidth(static_cast(tag->type)); if (size <= 4) { continue; } if (!seekTIFF(tif, tag->offset, SEEK_SET)) { return nullptr; } tag->data.resize(size); if (!readTIFF(tif, tag->data.data(), size)) { return nullptr; } } return tags; } void ExifTags::writeUint16(std::vector* dest, uint16_t value) { dest->resize(dest->size() + sizeof(value)); void* d = dest->data() + dest->size() - sizeof(value); memcpy(d, &value, sizeof(value)); } void ExifTags::writeUint32(std::vector* dest, uint32_t value) { dest->resize(dest->size() + sizeof(value)); writeUint32(dest, dest->size() - sizeof(value), value); } void ExifTags::writeUint32(std::vector* dest, size_t pos, uint32_t value) { void* d = dest->data() + pos; memcpy(d, &value, sizeof(value)); } void ExifTags::writeData(std::vector* dest, const std::vector& value) { dest->resize(dest->size() + value.size()); void* d = dest->data() + dest->size() - value.size(); memcpy(d, value.data(), value.size()); } void ExifTags::Encode(std::vector* dest) { if (tags_.empty()) { return; } #if HOST_BIGENDIAN dest->push_back('M'); dest->push_back('M'); #else dest->push_back('I'); dest->push_back('I'); #endif writeUint16(dest, 42); // Offset of IFD0. writeUint32(dest, 8); writeUint16(dest, static_cast(tags_.size())); for (const auto& tag : tags_) { writeUint16(dest, tag->tag); writeUint16(dest, tag->type); writeUint32(dest, tag->len); writeUint32(dest, tag->offset); } // No IFD1 dictionary. writeUint32(dest, 0); // Update offsets of tags that have their data stored separately. for (size_t i = 0; i < tags_.size(); i++) { const auto& tag = tags_[i]; size_t size = tag->data.size(); if (size <= 4) { continue; } // StartOfTags + (TagIndex * sizeof(Tag)) + OffsetOfTagData size_t pos = 10 + (i * 12) + 8; size_t offset = dest->size(); writeUint32(dest, pos, static_cast(offset)); writeData(dest, tag->data); } } heif_error getImageWidthAndHeight(TIFF *tif, uint32_t &width, uint32_t &height) { if (!TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &width) || !TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &height)) { struct heif_error err = { .code = heif_error_Invalid_input, .subcode = heif_suberror_Unspecified, .message = "Can not read width and/or height from TIFF image."}; return err; } return heif_error_ok; } heif_error readMono(TIFF *tif, heif_image **image) { uint32_t width, height; heif_error err = getImageWidthAndHeight(tif, width, height); if (err.code != heif_error_Ok) { return err; } err = heif_image_create((int) width, (int) height, heif_colorspace_monochrome, heif_chroma_monochrome, image); if (err.code != heif_error_Ok) { return err; } heif_image_add_plane(*image, heif_channel_Y, (int)width, (int)height, 8); int y_stride; uint8_t *py = heif_image_get_plane(*image, heif_channel_Y, &y_stride); for (uint32_t row = 0; row < height; row++) { TIFFReadScanline(tif, py, row, 0); py += y_stride; } return heif_error_ok; } heif_error readPixelInterleaveRGB(TIFF *tif, uint16_t samplesPerPixel, heif_image **image) { uint32_t width, height; heif_error err = getImageWidthAndHeight(tif, width, height); if (err.code != heif_error_Ok) { return err; } heif_chroma chroma = heif_chroma_interleaved_RGB; if (samplesPerPixel == 4) { chroma = heif_chroma_interleaved_RGBA; } err = heif_image_create((int)width, (int)height, heif_colorspace_RGB, chroma, image); if (err.code != heif_error_Ok) { return err; } heif_channel channel = heif_channel_interleaved; heif_image_add_plane(*image, channel, (int)width, (int)height, samplesPerPixel * 8); int y_stride; uint8_t *py = heif_image_get_plane(*image, channel, &y_stride); tdata_t buf = _TIFFmalloc(TIFFScanlineSize(tif)); for (uint32_t row = 0; row < height; row++) { TIFFReadScanline(tif, buf, row, 0); memcpy(py, buf, width * samplesPerPixel); py += y_stride; } _TIFFfree(buf); return heif_error_ok; } heif_error readPixelInterleave(TIFF *tif, uint16_t samplesPerPixel, heif_image **image) { if (samplesPerPixel == 1) { return readMono(tif, image); } else { return readPixelInterleaveRGB(tif, samplesPerPixel, image); } } heif_error readBandInterleaveRGB(TIFF *tif, uint16_t samplesPerPixel, heif_image **image) { uint32_t width, height; heif_error err = getImageWidthAndHeight(tif, width, height); if (err.code != heif_error_Ok) { return err; } if (samplesPerPixel == 3) { err = heif_image_create((int)width, (int)height, heif_colorspace_RGB, heif_chroma_interleaved_RGB, image); } else { err = heif_image_create((int)width, (int)height, heif_colorspace_RGB, heif_chroma_interleaved_RGBA, image); } if (err.code != heif_error_Ok) { return err; } heif_channel channel = heif_channel_interleaved; heif_image_add_plane(*image, channel, (int)width, (int)height, samplesPerPixel * 8); int y_stride; uint8_t *py = heif_image_get_plane(*image, channel, &y_stride); uint8_t *buf = static_cast(_TIFFmalloc(TIFFScanlineSize(tif))); for (uint16_t i = 0; i < samplesPerPixel; i++) { uint8_t *dest = py + i; for (uint32_t row = 0; row < height; row++) { TIFFReadScanline(tif, buf, row, i); for (uint32_t x = 0; x < width; x++, dest += samplesPerPixel) { *dest = buf[x]; } dest += (y_stride - width * samplesPerPixel); } } _TIFFfree(buf); return heif_error_ok; } heif_error readBandInterleave(TIFF *tif, uint16_t samplesPerPixel, heif_image **image) { if (samplesPerPixel == 1) { return readMono(tif, image); } else if (samplesPerPixel == 3) { return readBandInterleaveRGB(tif, samplesPerPixel, image); } else if (samplesPerPixel == 4) { return readBandInterleaveRGB(tif, samplesPerPixel, image); } else { struct heif_error err = { .code = heif_error_Unsupported_feature, .subcode = heif_suberror_Unspecified, .message = "Only 1, 3 and 4 bands are supported"}; return err; } } static void suppress_warnings(const char* module, const char* fmt, va_list ap) { // Do nothing } heif_error loadTIFF(const char* filename, InputImage *input_image) { TIFFSetWarningHandler(suppress_warnings); std::unique_ptr tifPtr(TIFFOpen(filename, "r"), [](TIFF* tif) { TIFFClose(tif); }); if (!tifPtr) { struct heif_error err = { .code = heif_error_Invalid_input, .subcode = heif_suberror_Unspecified, .message = "Cannot open TIFF ile"}; return err; } TIFF* tif = tifPtr.get(); if (TIFFIsTiled(tif)) { struct heif_error err = { .code = heif_error_Unsupported_feature, .subcode = heif_suberror_Unspecified, .message = "Tiled TIFF images are not supported yet"}; return err; } uint16_t shortv, samplesPerPixel, bps, config, format; if (TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &shortv) && shortv == PHOTOMETRIC_PALETTE) { struct heif_error err = { .code = heif_error_Unsupported_feature, .subcode = heif_suberror_Unspecified, .message = "Palette TIFF images are not supported yet"}; return err; } TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &config); TIFFGetField(tif, TIFFTAG_SAMPLESPERPIXEL, &samplesPerPixel); if (samplesPerPixel != 1 && samplesPerPixel != 3 && samplesPerPixel != 4) { struct heif_error err = { .code = heif_error_Invalid_input, .subcode = heif_suberror_Unspecified, .message = "Only 1, 3 and 4 samples per pixel are supported."}; return err; } TIFFGetField(tif, TIFFTAG_BITSPERSAMPLE, &bps); if (bps != 8) { struct heif_error err = { .code = heif_error_Invalid_input, .subcode = heif_suberror_Unspecified, .message = "Only 8 bits per sample are supported."}; return err; } if (TIFFGetField(tif, TIFFTAG_SAMPLEFORMAT, &format) && format != SAMPLEFORMAT_UINT) { struct heif_error err = { .code = heif_error_Invalid_input, .subcode = heif_suberror_Unspecified, .message = "Only UINT sample format is supported."}; return err; } struct heif_error err; struct heif_image* image = nullptr; switch (config) { case PLANARCONFIG_CONTIG: err = readPixelInterleave(tif, samplesPerPixel, &image); break; case PLANARCONFIG_SEPARATE: err = readBandInterleave(tif, samplesPerPixel, &image); break; default: struct heif_error err = { .code = heif_error_Invalid_input, .subcode = heif_suberror_Unspecified, .message = "Unsupported planar configuration"}; return err; } if (err.code != heif_error_Ok) { return err; } input_image->image = std::shared_ptr(image, [](heif_image* img) { heif_image_release(img); }); // Unfortunately libtiff doesn't provide a way to read a raw dictionary. // Therefore we manually parse the EXIF data, extract the tags and encode // them for use in the HEIF image. std::unique_ptr tags = ExifTags::Parse(tif); if (tags) { tags->Encode(&(input_image->exif)); } return heif_error_ok; }