/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Written 2020-2025 by Markus Triska (triska@metalevel.at) Part of Scryer Prolog. I place this code in the public domain. Use it in any way you want. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /** This library provides the nonterminal `format_//2` to describe formatted strings. `format/[2,3]` are provided for _impure_ output. The entire library only works if the Prolog flag `double_quotes` is set to `chars`, the default value in Scryer Prolog. This should also stay that way, to encourage a sensible environment. */ :- module(format, [format_//2, format/2, format/3, portray_clause_//1, portray_clause/1, portray_clause/2, listing/1 ]). :- use_module(library(dcgs)). :- use_module(library(lists)). :- use_module(library(error)). :- use_module(library(charsio)). :- use_module(library(between)). :- use_module(library(pio)). %% format_(+FormatString, +Arguments)// % % Usage: % % ``` % phrase(format_(FormatString, Arguments), Ls) % ``` % % `format_//2` describes a list of characters Ls that are formatted % according to FormatString. FormatString is a string (i.e., a list of % characters) that specifies the layout of Ls. The characters in % FormatString are used literally, except for the following tokens % with special meaning: % % | `~q` | use the next argument here, formatted as by `writeq/1` | % | `~a` | use the next argument here, which must be an atom | % | `~s` | use the next argument here, which must be a string | % | `~d` | use the next argument here, which must be an integer | % | `~f` | use the next argument here, a floating point number | % | `~Nf` | where N is an integer: format the float argument | % | | using N digits after the decimal point | % | `~Nd` | like ~d, placing the last N digits after a decimal point; | % | | if N is 0 or omitted, no decimal point is used. | % | `~ND` | like ~Nd, separating digits to the left of the decimal point | % | | in groups of three, using the character "," (comma) | % | `~NU` | like ~ND, using "_" (underscore) to separate groups of digits | % | `~NL` | format an integer so that at most N digits appear on a line. | % | | If N is 0 or omitted, it defaults to 72. | % | `~Nr` | where N is an integer between 2 and 36: format the | % | | next argument, which must be an integer, in radix N. | % | | The characters "a" to "z" are used for radices 10 to 36. | % | | If N is omitted, it defaults to 8 (octal). | % | `~NR` | like ~Nr, except that "A" to "Z" are used for radices > 9 | % | `~|` | place a tab stop at this position | % | `~N|` | where N is an integer: place a tab stop at text column N | % | `~N+` | where N is an integer: place a tab stop N characters | % | | after the previous tab stop (or start of line) | % | `~t` | distribute spaces evenly between the two closest tab stops | % | ``~`Ct`` | like ~t, use character C instead of spaces to fill the space | % | `~n` | newline | % | `~Nn` | N newlines | % | `~i` | ignore the next argument | % | `~~` | the literal ~ | % | `~w` | format like `write/1` would; consider using `~q`, `~d`, etc. | % % Instead of `~N`, you can write `~*` to use the next argument from % Arguments as the numeric argument. % % Example: % % ``` % ?- phrase(format_("~s~n~`.t~w!~12|", ["hello",there]), Cs). % Cs = "hello\n......there!". % ``` format_(Fs, Args) --> { format_args_cells(Fs, Args, Cells) }, format_cells(Cells). format_args_cells(Fs, Args, Cells) :- must_be(chars, Fs), must_be(list, Args), unique_variable_names(fabricated, Args, VNs), phrase(cells(Fs,Args,0,[],VNs), Cells). unique_variable_names(Type, Term, VNs) :- term_variables(Term, Vs), foldl(var_name(Type), Vs, VNs, 0, _). var_name(Type, V, Name=V, Num0, Num) :- charsio:fabricate_var_name(Type, Name, Num0), Num is Num0 + 1. user:goal_expansion(format_(Fs,Args,Cs0,Cs), format:format_cells(Cells, Cs0, Cs)) :- catch(format_args_cells(Fs,Args,Cells), E, % no partial evaluation for uses of format_//2 that % cannot be compiled statically, for example those where % the argument list is a variable, or where ~*n occurs % in the format string, or a domain error occurs ( ( E = error(instantiation_error,_) ; E = error(domain_error(_,_), _) ) -> false ; throw(E) )). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Partial evaluation of goals involving conditions that can be checked at compilation time. This is especially useful for the common case of conditions that test a numeric argument against 0. It is currently used for the goals of ~d. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ goal_pe(G0, G) :- var(G0), !, G = G0. goal_pe((A0,B0), (A,B)) :- !, goal_pe(A0, A), goal_pe(B0, B). goal_pe((Body0 ; Else0), Body) :- nonvar(Body0), Body0 = ( If -> Then0 ), !, ( ground(If) -> ( If -> goal_pe(Then0, Body) ; goal_pe(Else0, Body) ) ; goal_pe(Then0, Then), goal_pe(Else0, Else), Body = ( If -> Then ; Else ) ). goal_pe(Goal, Goal). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - format_cells//1 is an interpreter for cells, describing a string. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ format_cells([]) --> []. format_cells([Cell|Cells]) --> format_cell(Cell), format_cells(Cells). format_cell(newline) --> "\n". format_cell(cell(From,To,Es)) --> % distribute the space between the glue elements { phrase(elements_gluevars(Es, 0, Length), Vs), ( Vs = [] -> true ; Space is To - From - Length, ( Space =< 0 -> maplist(=(0), Vs) ; length(Vs, NumGlue), Distr is Space // NumGlue, Delta is Space - Distr*NumGlue, ( Delta =:= 0 -> maplist(=(Distr), Vs) ; BigGlue is Distr + Delta, reverse(Vs, [BigGlue|Rest]), maplist(=(Distr), Rest) ) ) ) }, format_elements(Es). format_elements([]) --> []. format_elements([E|Es]) --> format_element(E), format_elements(Es). format_element(chars(Cs)) --> seq(Cs). format_element(glue(Fill,Num)) --> { length(Ls, Num), maplist(=(Fill), Ls) }, seq(Ls). format_element(goal(_)) --> []. elements_gluevars([], N, N) --> []. elements_gluevars([E|Es], N0, N) --> element_gluevar(E, N0, N1), elements_gluevars(Es, N1, N). element_gluevar(chars(Cs), N0, N) --> { must_be(chars, Cs), length(Cs, L), N is N0 + L }. element_gluevar(glue(_,V), N, N) --> [V]. element_gluevar(goal(G), N, N) --> { G }. /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Our key datastructure is a list of cells and newlines. A cell has the shape cell(From,To,Elements), where From and To denote the positions of surrounding tab stops. Elements is a list of elements that occur in a cell, namely terms of the form chars(Cs), glue(Char, Var) and goal(G). "glue" elements (TeX terminology) are evenly stretched to fill the remaining whitespace in the cell. For each glue element, the character Char is used for filling, and Var is a free variable that is used when the available space is distributed. Goals are dynamically executed to obtain characters. In this way, format strings can be parsed and compiled statically when possible. newline is used if ~n occurs in a format string. It is used because a newline character does not consume whitespace in the sense of format strings. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ cells([], Args, Tab, Es, _) --> !, ( { Args == [] } -> cell(Tab, Tab, Es) ; { domain_error(empty_list, Args, format_//2) } ). cells([~,~|Fs], Args, Tab, Es, VNs) --> !, cells(Fs, Args, Tab, [chars("~")|Es], VNs). cells([~,w|Fs], [Arg|Args], Tab, Es, VNs) --> !, { G = write_term_to_chars(Arg, [numbervars(true),variable_names(VNs)], Chars) }, cells(Fs, Args, Tab, [chars(Chars),goal(G)|Es], VNs). cells([~,q|Fs], [Arg|Args], Tab, Es, VNs) --> !, { G = write_term_to_chars(Arg, [quoted(true),numbervars(true),variable_names(VNs)], Chars) }, cells(Fs, Args, Tab, [chars(Chars),goal(G)|Es], VNs). cells([~,a|Fs], [Arg|Args], Tab, Es, VNs) --> !, { G = atom_chars(Arg, Chars) }, cells(Fs, Args, Tab, [chars(Chars),goal(G)|Es], VNs). cells([~|Fs0], Args0, Tab, Es, VNs) --> { numeric_argument(Fs0, Num, [d|Fs], Args0, [Arg0|Args]) }, !, { G0 = ( Arg is Arg0, % evaluate compound expression must_be(integer, Arg), number_chars(Arg, Cs0), ( Num =:= 0 -> Cs = Cs0 ; length(Cs0, L), ( L =< Num -> Delta is Num - L, length(Zs, Delta), maplist(=('0'), Zs), phrase(("0.",seq(Zs),seq(Cs0)), Cs) ; BeforeComma is L - Num, length(Bs, BeforeComma), append(Bs, Ds, Cs0), phrase((seq(Bs),".",seq(Ds)), Cs) ) )), goal_pe(G0, G) }, cells(Fs, Args, Tab, [chars(Cs),goal(G)|Es], VNs). cells([~|Fs0], Args0, Tab, Es, VNs) --> { numeric_argument(Fs0, Num, ['D'|Fs], Args0, [Arg|Args]) }, !, { G = separate_digits_fractional(Arg, ',', Num, Cs) }, cells(Fs, Args, Tab, [chars(Cs),goal(G)|Es], VNs). cells([~|Fs0], Args0, Tab, Es, VNs) --> { numeric_argument(Fs0, Num, ['U'|Fs], Args0, [Arg|Args]) }, !, { G = separate_digits_fractional(Arg, '_', Num, Cs) }, cells(Fs, Args, Tab, [chars(Cs),goal(G)|Es], VNs). cells([~|Fs0], Args0, Tab, Es, VNs) --> { numeric_argument(Fs0, Num0, ['L'|Fs], Args0, [Arg|Args]) }, !, { G = (( Num0 =:= 0 -> Num = 72 ; Num = Num0 ), phrase(format_("~d", [Arg]), Cs0), phrase(split_lines_width(Cs0, Num), Cs) ) }, cells(Fs, Args, Tab, [chars(Cs),goal(G)|Es], VNs). cells([~,i|Fs], [_|Args], Tab, Es, VNs) --> !, cells(Fs, Args, Tab, Es, VNs). cells([~,n|Fs], Args, Tab, Es, VNs) --> !, cell(Tab, Tab, Es), n_newlines(1), cells(Fs, Args, 0, [], VNs). cells([~|Fs0], Args0, Tab, Es, VNs) --> { numeric_argument(Fs0, Num, [n|Fs], Args0, Args) }, !, cell(Tab, Tab, Es), n_newlines(Num), cells(Fs, Args, 0, [], VNs). cells([~,s|Fs], [Arg|Args], Tab, Es, VNs) --> !, cells(Fs, Args, Tab, [chars(Arg)|Es], VNs). cells([~,f|Fs], Args, Tab, Es, VNs) --> !, cells([~,'6',f|Fs], Args, Tab, Es, VNs). cells([~|Fs0], Args0, Tab, Es, VNs) --> { numeric_argument(Fs0, Num, [f|Fs], Args0, [Arg|Args]) }, !, { G = phrase(float_with_n_decimal_digits(Arg, Num), Chars) }, cells(Fs, Args, Tab, [chars(Chars),goal(G)|Es], VNs). cells([~,r|Fs], Args, Tab, Es, VNs) --> !, cells([~,'8',r|Fs], Args, Tab, Es, VNs). cells([~|Fs0], Args0, Tab, Es, VNs) --> { numeric_argument(Fs0, Num, [r|Fs], Args0, [Arg|Args]) }, !, { G = integer_to_radix(Arg, Num, lowercase, Cs) }, cells(Fs, Args, Tab, [chars(Cs),goal(G)|Es], VNs). cells([~,'R'|Fs], Args, Tab, Es, VNs) --> !, cells([~,'8','R'|Fs], Args, Tab, Es, VNs). cells([~|Fs0], Args0, Tab, Es, VNs) --> { numeric_argument(Fs0, Num, ['R'|Fs], Args0, [Arg|Args]) }, !, { G = integer_to_radix(Arg, Num, uppercase, Cs) }, cells(Fs, Args, Tab, [chars(Cs),goal(G)|Es], VNs). cells([~,'`',Char,t|Fs], Args, Tab, Es, VNs) --> !, cells(Fs, Args, Tab, [glue(Char,_)|Es], VNs). cells([~,t|Fs], Args, Tab, Es, VNs) --> !, cells(Fs, Args, Tab, [glue(' ',_)|Es], VNs). cells([~,'|'|Fs], Args, Tab0, Es, VNs) --> !, ( { ground(Tab0), Es = [chars(Cs)], ground(Cs) } -> { length(Cs, Width), Tab is Tab0 + Width }, cell(Tab0, Tab, Es) ; { G = (phrase(elements_gluevars(Es, 0, Width), _), Tab is Tab0 + Width) }, cell(Tab0, Tab, [goal(G)|Es]) ), cells(Fs, Args, Tab, [], VNs). cells([~|Fs0], Args0, Tab, Es, VNs) --> { numeric_argument(Fs0, Num, ['|'|Fs], Args0, Args) }, !, cell(Tab, Num, Es), cells(Fs, Args, Num, [], VNs). cells([~|Fs0], Args0, Tab0, Es, VNs) --> { numeric_argument(Fs0, Num, [+|Fs], Args0, Args) }, !, ( { ground(Tab0+Num) } -> { Tab is Tab0 + Num }, cell(Tab0, Tab, Es) ; { G = (Tab is Tab0 + Num) }, cell(Tab0, Tab, [goal(G)|Es]) ), cells(Fs, Args, Tab, [], VNs). cells([~|Cs], Args, _, _, _) --> ( { Args == [] } -> { domain_error(non_empty_list, [], format_//2) } ; { domain_error(format_string, [~|Cs], format_//2) } ). cells(Fs0, Args, Tab, Es, VNs) --> { phrase(upto_what(Fs1, ~), Fs0, Fs), Fs1 = [_|_] }, cells(Fs, Args, Tab, [chars(Fs1)|Es], VNs). float_with_n_decimal_digits(F, N) --> { Fr is abs(float_fractional_part(F)), FrR0 is round(Fr*10^N), I0 is truncate(F), ( FrR0 >= 10^N -> I is I0+truncate(sign(F)), FrR = FrR0 ; I = I0, FrR is FrR0+10^N ) }, ( { I=0, F<0, FrR>10^N } -> "-0" ; { number_chars(I, Is) }, seq(Is) ), ".", ( { FrR = 1 } -> "0" ; { number_chars(FrR, ['1'|FrRs]) }, seq(FrRs) ). n_newlines(N0) --> { N0 > 0, N is N0 - 1 }, [newline], n_newlines(N). n_newlines(0) --> []. /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ?- phrase(format:upto_what(Cs, ~), "abc~test", Rest). Cs = "abc", Rest = "~test". ?- phrase(format:upto_what(Cs, ~), "abc", Rest). Cs = "abc", Rest = []. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ separate_digits_fractional(Arg, Sep, Num, Cs) :- number_chars(Num, NCs), phrase(("~",seq(NCs),"d"), FStr), phrase(format_(FStr, [Arg]), Cs0), phrase(upto_what(Bs0, .), Cs0, Ds), reverse(Bs0, Bs1), phrase(groups_of_three(Bs1,Sep), Bs2), reverse(Bs2, Bs), append(Bs, Ds, Cs). upto_what([], W), [W] --> [W], !. upto_what([C|Cs], W) --> [C], !, upto_what(Cs, W). upto_what([], _) --> []. groups_of_three([A,B,C,D|Rs], Sep) --> !, [A,B,C,Sep], groups_of_three([D|Rs], Sep). groups_of_three(Ls, _) --> seq(Ls). split_lines_width(Cs, Num) --> ( { length(Prefix, Num), append(Prefix, [R|Rs], Cs) } -> seq(Prefix), "_\n", split_lines_width([R|Rs], Num) ; seq(Cs) ). cell(From, To, Es0) --> ( { Es0 == [] } -> [] ; { reverse(Es0, Es) }, [cell(From,To,Es)] ). %?- format:numeric_argument("2f", Num, [f|Fs], Args0, Args). %?- format:numeric_argument("100b", Num, Rs, Args0, Args). numeric_argument(Ds, Num, Rest, Args0, Args) :- ( Ds = [*|Rest] -> Args0 = [Num|Args] ; phrase(numeric_argument_(Ds, Rest), Ns), foldl(plus_times10, Ns, 0, Num), Args0 = Args ). numeric_argument_([D|Ds], Rest) --> ( { member(D, "0123456789") } -> { number_chars(N, [D]) }, [N], numeric_argument_(Ds, Rest) ; { Rest = [D|Ds] } ). plus_times10(D, N0, N) :- N is D + N0*10. radix_error(lowercase, R) --> format_("~~~dr", [R]). radix_error(uppercase, R) --> format_("~~~dR", [R]). integer_to_radix(I0, R, Which, Cs) :- I is I0, % evaluate compound expression must_be(integer, I), must_be(integer, R), ( \+ between(2, 36, R) -> phrase(radix_error(Which,R), Es), domain_error(format_string, Es, format_//2) ; true ), digits(Which, Ds), ( I < 0 -> Pos is abs(I), phrase(integer_to_radix_(Pos, R, Ds), Cs0, "-") ; I =:= 0 -> Cs0 = "0" ; phrase(integer_to_radix_(I, R, Ds), Cs0) ), reverse(Cs0, Cs). integer_to_radix_(0, _, _) --> !. integer_to_radix_(I0, R, Ds) --> { M is I0 mod R, nth0(M, Ds, D), I is I0 // R }, [D], integer_to_radix_(I, R, Ds). digits(lowercase, "0123456789abcdefghijklmnopqrstuvwxyz"). digits(uppercase, "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Impure I/O, implemented as a small wrapper over format_//2. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ %% format(+Fs, +Args) % % The predicate `format/2` is like `format_//2`, except that it % outputs the text on the terminal instead of describing it % declaratively as a list of characters. % % If at all possible, `format_//2` should be used, to stress pure % parts that enable easy testing etc. If necessary, you can emit the % described list of characters `Ls` with `maplist(put_char, Ls)` or, % much faster, with `format("~s", [Ls])`. Ideally, however, you use % `phrase_to_file/[2,3]` or `phrase_to_stream/2` from `library(pio)` % to write the described list directly to a file or stream, % respectively: `phrase_to_stream(format_(..., [...]), S)`. The % advantage of this is that an ideal implementation writes the % characters as they become known, without manifesting the list. format(_, _) :- not_used. user:goal_expansion(format(Fs, Args), ( current_output(Stream), format(Stream, Fs, Args))). %% format(Stream, FormatString, Arguments) % % Output the described string to the given Stream. If Stream is a % binary stream, then the code of each emitted character must be in % 0..255. format(_, _, _) :- not_used. user:goal_expansion(format(Stream, Fs, Args), ( pio:phrase_to_stream(format:format_(Fs, Args), Stream), flush_output(Stream))). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ?- phrase(format:cells("hello", [], 0, [], []), Cs). ?- phrase(format:cells("hello~10|", [], 0, [], []), Cs). ?- phrase(format:cells("~ta~t~10|", [], 0, [], []), Cs). ?- phrase(format_("~`at~50|", []), Ls). ?- phrase(format:cells("~`at~50|", [], 0, [], []), Cs), phrase(format:format_cells(Cs), Ls). ?- phrase(format:cells("~ta~t~tb~tc~21|", [], 0, [], []), Cs). Cs = [cell(0,21,[glue(' ',_A),chars("a"),glue(' ',_B),glue(' ',_C),chars("b"),glue(' ',_D),chars("c")])]. ?- phrase(format:cells("~ta~t~4|", [], 0, [], []), Cs). Cs = [cell(0,4,[glue(' ',_A),chars("a"),glue(' ',_B)])]. ?- phrase(format:format_cell(cell(0,1,[glue(a,_94)])), Ls). ?- phrase(format:format_cell(cell(0,50,[chars("hello")])), Ls). ?- phrase(format_("~`at~50|~n", []), Ls). ?- phrase(format_("hello~n~tthere~6|", []), Ls). ?- format("~ta~t~4|", []). a true. ?- format("~ta~tb~tc~10|", []). a b c true. ?- format("~tabc~3|", []). ?- format("~ta~t~4|", []). ?- format("~ta~t~tb~tc~20|", []). a b c true. ?- format("~2f~n", [3]). 3.00 true. ?- format("~20f", [0.1]). 0.10000000000000000000 true. ?- X is atan(2), format("~7f~n", [X]). 1.1071487 X = 1.1071487177940906. ?- format("~`at~50|~n", []). aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa true ?- format("~t~N", []). ?- format("~q", [.]). '.' true. ?- format("~12r", [300]). 210 true. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - We also provide rudimentary versions of portray_clause/1 and listing/1. In the eventual library organization, portray_clause/1 and related predicates may be placed in their own dedicated library. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ %% portray_clause(+Term) % % `portray_clause/1` is useful for printing solutions in such a way % that they can be read back with `read/1`. portray_clause(Term) :- current_output(Out), portray_clause(Out, Term). portray_clause(Stream, Term) :- phrase_to_stream(portray_clause_(Term), Stream), flush_output(Stream). portray_clause_(Term) --> { unique_variable_names(numbervars, Term, VNs) }, portray_(Term, VNs), ".\n". literal(Lit, VNs) --> { write_term_to_chars(Lit, [quoted(true),variable_names(VNs),double_quotes(true)], Ls) }, ( { nonvar(Lit), \+ number(Lit), functor(Lit, F, A), current_op(Pri, _, F), ( A =:= 0 ; Pri >= 1000 ) } -> "(", seq(Ls), ")" ; seq(Ls) ). literal_(Lit, VNs) --> { phrase(literal(Lit, VNs), Ls) }, seq(Ls), ( { phrase((...,[Last]), Ls), char_type(Last, graphic_token) } -> " " ; "" ). portray_(Var, VNs) --> { var(Var) }, !, literal(Var, VNs). portray_((Head :- Body), VNs) --> !, literal(Head, VNs), " :-\n", body_(Body, 0, 3, VNs). portray_((Head --> Body), VNs) --> !, literal(Head, VNs), " -->\n", body_(Body, 0, 3, VNs). portray_(Any, VNs) --> literal_(Any, VNs). body_(Var, C, I, VNs) --> { var(Var) }, !, indent_to(C, I), literal(Var, VNs). body_((A,B), C, I, VNs) --> !, body_(A, C, I, VNs), ",\n", body_(B, 0, I, VNs). body_(Body, C, I, VNs) --> { body_if_then_else(Body, If, Then, Else) }, !, indent_to(C, I), "( ", { C1 is I + 3 }, body_(If, C1, C1, VNs), " ->\n", body_(Then, 0, C1, VNs), "\n", else_branch(Else, I, VNs). body_((A;B), C, I, VNs) --> !, indent_to(C, I), "( ", { C1 is I + 3 }, body_(A, C1, C1, VNs), "\n", else_branch(B, I, VNs). body_(Goal, C, I, VNs) --> indent_to(C, I), literal_(Goal, VNs). % True iff Body has the shape ( If -> Then ; Else ). body_if_then_else(Body, If, Then, Else) :- nonvar(Body), Body = (A ; Else), nonvar(A), A = (If -> Then). else_branch(Else, I, VNs) --> indent_to(0, I), "; ", { C is I + 3 }, ( { body_if_then_else(Else, If, Then, NextElse) } -> body_(If, C, C, VNs), " ->\n", body_(Then, 0, C, VNs), "\n", else_branch(NextElse, I, VNs) ; { nonvar(Else), Else = ( A ; B ) } -> body_(A, C, C, VNs), "\n", else_branch(B, I, VNs) ; body_(Else, C, C, VNs), "\n", indent_to(0, I), ")" ). indent_to(CurrentColumn, Indent) --> format_("~t~*|", [Indent-CurrentColumn]). /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ?- portray_clause(a). a. ?- portray_clause((a :- b)). a :- b. ?- portray_clause((a :- b, c, d)). a :- b, c, d. true. ?- portray_clause([a,b,c,d]). "abcd". ?- portray_clause(X). ?- portray_clause((f(X) :- X)). ?- portray_clause((h :- ( a -> b; c))). ?- portray_clause((h :- ( (a -> x ; y) -> b; c))). ?- portray_clause((h(X) :- ( (a(X) ; y(A,B)) -> b; c))). ?- portray_clause((h :- (a,d;b,c) ; (b,e;d))). ?- portray_clause((a :- b ; c ; d)). ?- portray_clause((h :- L = '.')). ?- portray_clause(-->(a, (b, {t}, d))). ?- portray_clause((A :- B)). - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ listing(PI) :- nonvar(PI), ( PI = Name/Arity0 -> Arity = Arity0 ; PI = Name//Arity0 -> Arity is Arity0 + 2 ; type_error(predicate_indicator, PI, listing/1) ), functor(Head, Name, Arity), \+ \+ clause(Head, _), % only true if there is at least one clause ( clause(Head, Body), ( Body == true -> portray_clause(Head) ; portray_clause((Head :- Body)) ), false ; true ).